

Geological Mapping of the 1985 Chinese--British Tibetan (Xizang--Qinghai) Plateau Geotraverse Route

W. S. F. Kidd, Pan Yusheng, Chang Chengfa, M. P. Coward, J. F. Dewey, A. Gansser, P. Molnar, R. M. Shackleton and Sun Yiyin

Phil. Trans. R. Soc. Lond. A 1988 **327**, 287-305 doi: 10.1098/rsta.1988.0130

Email alerting service

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

THE ROYA

PHILOSOPHICAL TRANSACTIONS

MATHEMATICAL, PHYSICAL & ENGINEERING

THE ROYAL

PHILOSOPHICAL TRANSACTIONS Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click $\ensuremath{\text{here}}$

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

 Phil. Trans. R. Soc. Lond. A 327, 287–305 (1988)
 [287]

 Printed in Great Britain

Geological mapping of the 1985 Chinese–British Tibetan (Xizang–Qinghai) Plateau Geotraverse route

By W. S. F. Kidd¹, Pan Yusheng², Chang Chengfa², M. P. Coward³, J. F. Dewey⁴, F.R.S., A. Gansser⁵, P. Molnar⁶, R. M. Shackleton⁷, F.R.S., and Sun Yiyin²

¹Department of Geological Sciences, State University of New York, Albany, New York 12222, U.S.A. ²Institute of Geology, Academia Sinica, Box 634, Beijing, People's Republic of China

³ Department of Geology, Imperial College, Prince Consort Road, London SW7 2BP, U.K.

⁴ Department of Earth Sciences, University of Oxford, Parks Road, Oxford OX1 3PR, U.K.

⁵ Geologisches Institut, Eidgenossische Technische Hochschule, CH-8092, Zürich, Switzerland

⁶ Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, U.S.A.

⁷ Department of Earth Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, U.K.

[Map and microfiche in pockets]

The 1:500,000 coloured geological map of the traverse route combines observations from the Geotraverse, previous mapping, and interpretation of orbital images. The position of all localities visited by Geotraverse participants and basic geological data collected by them along the traverse route are shown on a set of maps originally drawn at 1:100,000 scale, reproduced on microfiche for this publication. More detailed mapping, beyond a single line of section, was achieved in five separate areas. The relationships between major rock units in these areas, and their significance, are outlined in this paper. Near Gyanco, (Lhasa Terrane) an ophiolite nappe, apparently connected with outcrops of ophiolites in the Banggong Suture about 100 km to the north, was underthrust by a discontinuous slice of Carboniferous-Permian clastic rocks and limestone, contrary to a previous report of the opposite sequence. At Amdo, a compressional left-lateral strike-slip fault zone has modified relationships along the Banggong Suture. Near Wuli, (northern Qiangtang Terrane) limited truncation of Triassic strata at the angular unconformity below Eocene redbeds demonstrates that most of the folding here is of Tertiary age. The map of the nearby Erdaogou region displays strong fold and thrust-shortening of the Eocene redbeds, evidence of significant crustal shortening after the India-Asia collision began. In the Xidatan-Kunlun Pass area, blocks of contrasting Permo-Triassic rocks are separated by east-trending faults. Some of these faults are ductile and of late Triassic - early Jurassic age, others are brittle and part of the Neogene-Quaternary Kunlun leftlateral strike-slip fault system. Some more significant remaining problems that geological mapping might help to solve are discussed briefly, including evidence for a possible additional ophiolitic suture within the Qiangtang Terrane.

1. INTRODUCTION

The purposes of this chapter are to document the sources used to compile the 1:500,000 scale geological map of the Geotraverse route and its surroundings (map 1, in pocket) and to discuss briefly the detailed geological maps, originally drawn on the 1:100,000 scale topographic map

sheets provided by Academia Sinica, that record localities and basic data collected by all working groups during the traverse (microfiche 2).

Fifty-five days were spent on the traverse route, from June 4th to July 28th, 1985, covering a distance of about 1300 km along the main paved road from Lhasa to Golmud, with additional distances of several hundred kilometres on subsidiary traverses along less travelled dirt roads and tracks leading away from the main road. This required an average of about 30 km of section completed each day. Consequently, *detailed* geological mapping, in the strict sense of areally extensive and well-distributed observations, was not possible (nor was it originally intended) at most places along the traverse route. Where detailed observation of more than a narrow section line (i.e., mapping) was achieved, the results are discussed below. The immense scope for further investigations in many sections of the traverse route is well-illustrated by the current lack of detailed geological maps along most of its length, not to mention the vast remainder of the rest of the Qinghai–Xizang (Tibetan) Plateau. Some of the more critical geological problems remaining from the Geotraverse route whose solution would likely be provided or assisted by detailed mapping are also briefly discussed.

2. GEOLOGICAL MAP OF THE GEOTRAVERSE ROUTE

The coloured map (map 1, in pocket) is partly based on the field observations and subsequent laboratory results of the participants of the 1985 Academia Sinica – Royal Society Geotraverse, documented in the papers in this volume, on earlier work from various Chinese sources, and on the 1981–83 Franco-Chinese collaboration. Information from both the 1985 Geotraverse and the earlier sources has been extrapolated using interpretations of orbital imagery, which have also been used to modify previous map patterns in some places.

(a) Previous work

The principal maps used for compilation of map 1 are:

a) Geological map of the Southern Tethys of the Qinghai-Xizang Plateau [1:1 million scale]. (Yin Jixiang *et al.*, in press.)

b) Geological map of Qinghai Province [1:million scale] (Qinghai Bureau of Geology and Mineral Resources 1981).

c) Geological map of the Qinghai-Xizang (Tibet) Plateau [1:1.5 million scale]. (Ministry of Geology and Mineral Resources, Beijing, 1980).

d) Geological map of Lhasa Sheet [1:1 million scale] (Xizang Bureau of Geology and Mineral Resources 1979).

e) Geological map of Golmud Sheet, and Geological map of Naij Tal Sheet [1:200,000 scale] (Qinghai Bureau of Geology and Mineral Resources 1984).

f) Carte géologique du sud du Tibet [1:500,000 scale] (J. P. Burg 1983).

Stratigraphic units, defined by previous work, to which reference is made in this chapter or in the map legend are discussed, with citations, by Yin *et al.* (this volume).

(b) Orbital imagery

For most of the Qinghai-Xizang Plateau, the only orbital imagery at the time of the geotraverse consisted of multispectral scanner (MSS) images from the older series of LANDSAT platforms. Other imagery available to us consisted of a line of Metric Camera (colour film

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

THE ROYAL A SOCIETY

PHILOSOPHICAL TRANSACTIONS

GEOLOGICAL MAPPING

original) images obtained from a Shuttle–Spacelab mission that closely follows much of the line of the Geotraverse. The large-format Camera $(9 \times 18$ inch negative, black and white) flown on another Shuttle mission provides a few spectacularly high-resolution images from two paths crossing the northern end of the Geotraverse route.

The LANDSAT imagery was obtained in false colour composite prints at a scale of 1:250,000. Because these images are from the older 4-spectral-band MSS instrument, they have a limited capability to discriminate bedrock lithologies (and lithologic units), especially when compared with the more recent Thematic Mapper (TM) 7-band instrument. Because of certain operating constraints on the LANDSAT 4 and 5 platforms, and a lack of a suitable data-relay satellite, TM images are not available for most of the Qinghai–Xizang (Tibetan) Plateau. Unlike the TM data, MSS images do not generally yield significant additional geologic information over the standard false colour print when various computer-generated enhancements are applied to the original digital image data. It may be possible to make certain features more obvious but, in most cases, they are easily seen on the original "unenhanced" images.

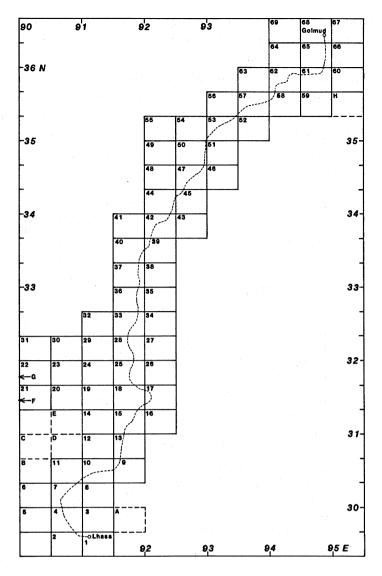
The Metric Camera images (obtained as prints at a scale of about 1:240,000), being visible light products, have an even more limited capability to discriminate lithologies. Lithologic boundaries and units can be clearly seen locally on these two kinds of images, especially the LANDSAT images, but it is not possible in most places to distinguish bedrock units with any confidence, or to follow contacts precisely, over more than a few kilometres. For this reason alone, it would be inappropriate to use the imagery to extrapolate from the detailed traverse observations to fill each sheet of the 1:100,000 scale maps. There are two reasons why it is difficult to distinguish most lithologic units and/or their boundaries on the images; the rocks along the traverse route are with minor exceptions not structurally simple, and the rock exposures are quite extensively veneered with *felsenmeer* or solifluction materials in the less rugged areas, it being hard to trace structurally complex units in any area of rugged relief no matter how good the exposure. However, reliably distinguishable lithologic contrasts do occur in some local areas, usually where the contrast is very striking on the ground, and these can be used to check or modify previous maps for the compilation of the 1:500,000 traverse route map. For example, the contacts between granites and darker and/or more fractured rocks can be seen in several, but not all places, near Gyanco and Dongqiao, and in the southern Kunlun Shan. Contacts of limestones with darker sedimentary rocks also stand out in some places, for instance between Ordovician carbonates and Triassic arenites in the Golmud River valley, and between volcanics and carbonates near Yaxi Co. Where topography is modest, a fairly general lithologic distinction can be seen on the LANDSAT images between redbeds (of several ages) and other rocks, for example near Gyanco, Amdo, Yanshiping, and near Erdaogou. This can be done because the redbeds have, in many places, a distinctive yellow-orange tone on the false-colour images. However, where the topography becomes rugged, and where soil or solifluction cover is developed, this feature becomes less prominent, and it is clear that it does not show reliably all areas of redbed occurrence.

Although lithologies and their contacts are generally difficult to distinguish, stratification expressed by topographic features is more easily identified and followed on these images. It is not always possible to show the full amount of stratification detail available from the images on the 1:500,000 scale map, but the general trends and the major folds are included. Because of the poor expression of the stratification in most places, it is not possible to identify easily old, inactive faults subparallel with strike. The assumption must be that most of these fault structures are not detected reliably from the images.

The structures that are most prominent on the images are the active (Quaternary) faults, as has been known for some time (Molnar & Tapponnier 1978). These are distinguished from the older faults on the 1:500,000 map. The observations made during the geotraverse on these structures are discussed by Kidd & Molnar, this volume). Most concern the major easttrending left-lateral strike-slip fault system in the southern Kunlun Shan, of which two major fault strands, the Xidatan and Kunlun Pass Faults, are crossed by the traverse route. The north-trending normal faults, and related NE- and NW-trending strike-slip faults, seen in several places along the southern half of the route, have been recently described in detail by Armijo et al. (1986).

The orbital imagery, therefore, is extremely helpful in providing a general overview of the topography and geology, and for mapping some more detailed aspects of the geology, particularly neotectonic structures. It has limitations, however, in extrapolation of lithologic map units and older (inactive) structures. The speculative nature of most of these extrapolations means that the 1:500,000 map will probably need revision when ground investigation is done of areas not covered by our traverse or previous Chinese field work. Several of the Chinese maps, particularly the 1:1.5 million scale geological map of the Qinghai-Xizang plateau, have incorporated substantial input from interpretation of LANDSAT images. The areas in which this has been done are not readily separable from those in which there is ground-based map data. Therefore caution is needed in using particular map patterns or relations on the 1:500,000 scale traverse map for far-reaching conclusions, particularly for geology far from that known on the ground.

3. DETAILED TRAVERSE MAPS


(a) Introduction

Base maps used during the traverse were provided by the Academy of Sciences and consisted of a set of 69 topographic maps at 1:100,000 scale (figure 1) of excellent detail and quality. Most have a contour interval of 20 metres; some, in areas of rugged topography, have an interval of 40 metres. These maps proved ideal for the purposes of recording locations and basic geology throughout the traverse. In a few places, some Geotraverse groups locally went beyond the coverage of these maps; in these areas we used 1:100,000 scale black-and-white prints of the LANDSAT images as base maps, although it was clearly easier and preferable to use the topographic maps for location in the field rather than the images. A set of the topographic maps is lodged with the British Museum (Natural History).

Localities and basic geological information, such as observed lithologies, lithologic unit boundaries, faults, fold hinges, attitudes of bedding, foliation, lineation, etc., were recorded on a master set of maps during the traverse. These data were checked and supplemented from participants' field notes after the end of the traverse. The master set of geotraverse geologic maps is lodged in the collections of the British Museum (Natural History). The localities and all the geological information have been abstracted by redrafting from the 48 topographic map sheets that were used, for reproduction on microfiche (in pocket). The intention is that these maps show only data observed in the field, and modest extrapolations ("field glasses geology") made in the field at the time by those who visited the particular localities. Because all the localities visited by all participants are shown on these maps, each with its locality number, it will be clear which information is from outcrop observations and which consists of extrapolation

0F

Downloaded GEOSta Overset overset with the post of the second sec

- FIGURE 1. Index map to topographic map sheets (1:100,000 scale) provided for the Geotraverse. Lhasa-Golmud highway shown by dashed line. Numbers are keyed to map sheet names in the list below. Detailed geological maps drawn on this base (microfiche, in pocket) use these sheet numbers and names for identification. Not all map sheets were used and in cases where only a small proportion of a map sheet was used, it may be combined with an adjacent sheet in the microfiche geological maps. Areas labelled with letters A-H refer to geological observations made on LANDSAT image base maps; these areas are included with the other maps on microfiche.
 - 1. Lhasa City

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

THE ROYAI

PHILOSOPHICAL TRANSACTIONS

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS COLLECTOR

9

OF

- 2. Quxu
- 3. Lhunzhub
- 4. Maqu
- Jidaguo 5.
- Junmaching 6.
- 7. Yangbajian
- Pangduo 8.
- 9. Baga
- 10. Damxung
- 11. Ningzhong
- 12. Nam Lake
- 13. Gulu
- 14. Bengcuo
- 15. Sangxiong
- 16. Dareng
- 17. Nagqu
- 18. Gajia
- 19. Baerda
- 20. Jiangcuo
- 21. Baingoin
- 22. Dongkacuo
- 23. Dongqiao

- 24. Jibuxiang
 - 25. Erdaohe Station
 - 26. Nyimaqu
 - 27. Nyainrong County
- 28. Amdo
- 29. Zhashuqu
- 30. Cigetangcuo
- 31. Yatucuo
- 32. Chaqu
- 33. 112th Station
- 34. Maisairi
- 35. Dengka
- 36. Tanggula Pass
- 37. Wenquan
- 38. Longyala
- 39. Yanshiping
- 40. Wenquan Station
- 41. Jiri
- 42. Tongtian Bank
- 43. Cuojiangqin
- 44. Tuotuo River
- 45. Yaxicuo
- 46. Bayingzangtuoma

- 47. Erdaogou
- 48. Tangrijiapang
- 49. Gelushankecuo
- 50. Fenghuoshan
- 51. Lemacuo
- 52. Duoqun
- Wudaoliang 53.
- **54**. Gongmaorima
- 55. Cuorendejia
- 56. Haidingluoer
- 57. Budongquan
- 58. 63rd Station
- 59. Zheseke
- 60. Reshui
- 61. Naij Tal
- 62. Qingbanshan

- 66. Duoyahe
- 67. Golmud East Farm
- 68. Comm. of Golmud 69. Dazaohuo

19-2

- - 63. Diayingshan
 - 64. Tuotuolalin
 - 65. Dishantou

from them. The locality numbers can be used to relocate precisely the sampling and fossil localities to which reference is made in other papers in this volume and in any subsequent publications on the material collected.

The locations of the cross-sections of Coward *et al.* (this volume) are given on each map; in most cases, one section crosses several sheets and the continuation is indicated by subscript letters in sequence. In a few places along the Geotraverse route, some detailed mapping beyond a single line of section was achieved. Results from those areas are now discussed briefly. The location of each of the detailed maps (figures 3, 4, 6, 7, and 8) are given with respect to the traverse route on figure 2.

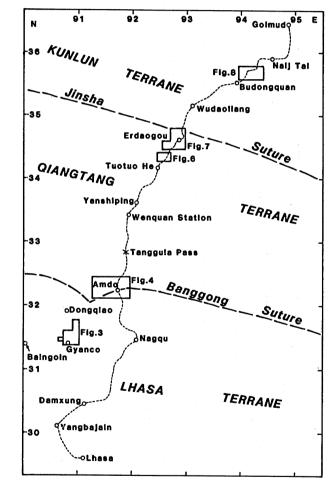


FIGURE 2. Sketch map showing location along the traverse route of detailed geological maps (figures 3, 4, 6, 7, and 8).

(b) Gyanco-Pung Co

In this area (figure 3), stratigraphic and structural relationships are exposed between the Banggong Suture-derived ophiolite nappe, Carboniferous-Permian clastics, limestones of uncertain age (?Permian or ?Jurassic), and Jurassic flysch. Mid-Cretaceous red clastics and andesite-rhyolite volcanics are also present, and mid-Cretaceous granitoid rocks and NNWtrending andesite dykes were observed to intrude all lithologies except the Cretaceous clastics MATHEMATICAL, PHYSICAL & ENGINEERING

THE ROYAI

PHILOSOPHICAL TRANSACTIONS

MATHEMATICAL, PHYSICAL & ENGINEERING

THE ROYA

PHILOSOPHICAL TRANSACTIONS

0

SO

OF

GEOLOGICAL MAPPING

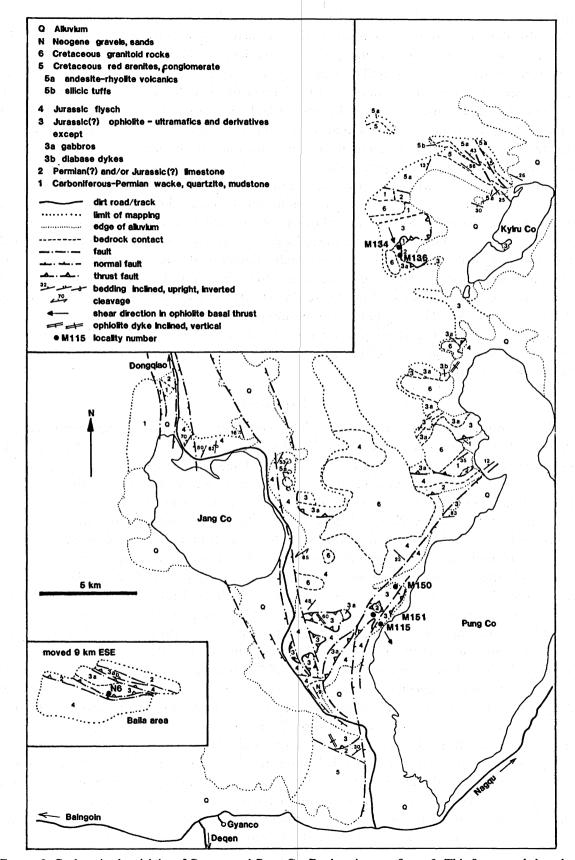


FIGURE 3. Geology in the vicinity of Gyanco and Pung Co. For location, see figure 2. This figure, and the other detailed maps, may be found easier to interpret if some or all of the units are coloured. The inset of the Baila area has been moved 9 km ESE from the true position with respect to the main area of the map.

and volcanics. A previous report on a larger area that encloses this one (Girardeau et al. 1984) maintains that the carbonates and the Carbo-Permian clastics form a nappe on top of the ophiolite. Our mapping in this area, and observations to the west near Baila (figure 3), demonstrates that this is not so, and that the Carboniferous-Permian clastics and the carbonates all lie in an imbricate zone (or duplex) at the base of the ophiolite nappe. The mapping also suggests why the confusion arose: if the normal faults near to and subparallel with the west shore of Pung Co are not recognised, it appears as if the ophiolite ultramafic rocks exposed near the lake shore are structurally below these sediments (and also Jurassic flysch) exposed to the west in the hillside. Our mapping was not extensive enough, given the less-than-perfect exposure, to determine whether any original large-scale relationships are preserved among the various ophiolite lithologies, nor did we determine whether the mid-Cretaceous volcanics and clastics were deposited unconformably above a severely folded or a basically flat-lying nappe pile. Structures at the basal contact of the ophiolite nappe, where serpentinite and carbonated derivatives of ultramafics are in original fault contact with Jurassic flysch, or with the Carboniferous-Permian clastics, or limestone, show clear SSE-directed sense-of-shear and shear direction indicators at localities M115, M134, M136, M150 and M151, on the west side of the Pung Co valley. These include S-C-type oblique foliations, oblique vein and fracture sets, steps in fibrous vein slickensides, and asymmetric folds. Oblique S-C-type foliation was also seen in the same position, and giving the same shear sense, at locality N6, near Baila, about 20 km west of Gyanco.

(c) Amdo region

The mapping in this area covered the ENE-trending range straddling the town of Amdo. Ophiolite lithologies occur on the south side of this range (figure 4). They mark the present location of the suture between the Lhasa and Qiangtang Terranes.

In the southwest, red clastic rocks of uncertain, Cretaceous or Tertiary age define a large asymmetrical syncline with a steeply N-dipping axial surface, which is cut by two prominent NNW-trending tear faults. Nearer Amdo, ophiolite lithologies (serpentinite and gabbro) are imbricated in south-directed thrusts with redbeds that contain andesitic volcanics, which are probably of mid-Cretaceous age. This imbricate zone projects westward above the large syncline of redbeds. The northern contact of ophiolite serpentinite in the section along the river valley about 10 km west of Amdo is a steep S-dipping fault, probably with a N-directed thrust component. Other steep faults and a moderately S-dipping, N-directed thrust cut folded redbeds and andesitic volcanics north of this point. East of Amdo, the extension of these redbeds is truncated by a steep fault with a S-side down component of displacement against mid and late Jurassic shale, limestone and arenites; west of Amdo it is not clear whether the equivalent contact is faulted or is unconformable. The Jurassic strata belong to the Qiangtang Terrane. They form a large, west-plunging anticline north and east of Amdo, and they are thrust north over redbeds of uncertain age (Cretaceous or Tertiary). In the same area (figure 4), some of these redbeds are themselves thrust northward over similar but finer-grained and softer red strata, which may be of Tertiary age. It is suspected that some of the redbeds west of Amdo unconformably cover the overthrust Jurassic strata, but a lack of good exposure prevented a firm conclusion. The northern redbeds are inferred to rest with angular unconformity on folded Jurassic strata of the Qiangtang Terrane, because a prominent erosion surface with reddening below it (figure 4) is seen about 20 km NNE of Amdo.

Downloaded from rsta.royalsocietypublishing.org GEOLOGICAL MAPPING

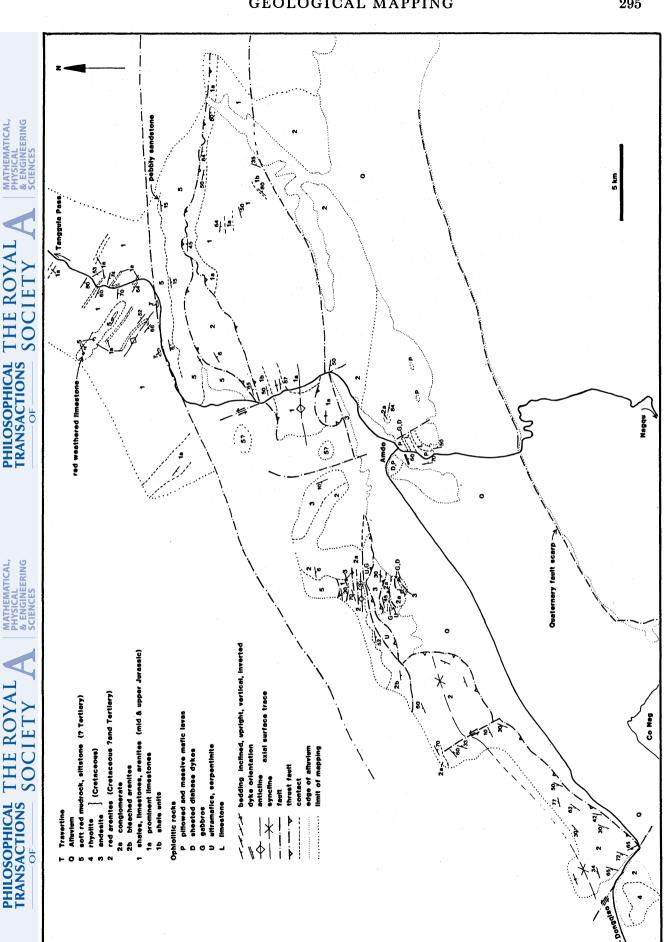


FIGURE 4. Geological map of the Amdo area. For location, see figure 2.

W. S. F. KIDD AND OTHERS

The fold trends (ESE) in these Jurassic rocks of this part of the Qiangtang Terrane are strongly oblique to and truncated by the ENE-trending fold and fault trends of the Amdo range. Furthermore, oblique slickensides and offset markers in outcrop imply that at least some of the faults in the Amdo range have a significant left-lateral strike-slip component of displacement. The overall structure of the narrow range, with outward-directed thrusts and steep faults with strike-slip components is identical to the "flower-structure" described from welldocumented strike-slip fault zones with oblique compressional motion. This compressional displacement explains both the truncation of folded strata of the Qiangtang Terrane in this area, and the strong modification of the original relationships of the ophiolite in the suture zone. The structures seen in the Amdo region are thus largely the product of tectonic events younger than the initial suturing of the Qiangtang and Lhasa Terranes, even though these ophiolite occurrences now mark the position of the (modified) suture in this transect. At least a small amount of the compressional strike-slip tectonism affecting this area is probably Quaternary; several rivers crossing the Amdo range have a sharply antecedent relationship to it (see Kidd & Molnar, this volume), and the fault scarp on the south side of the Co Nag valley (figure 4) is also clearly an active tectonic feature.

The truncation of folds in the Qiangtang Terrane (figure 5) is more or less restricted to the length of the area mapped in figure 4. The trend of the Banggong Suture, inferred from ophiolite

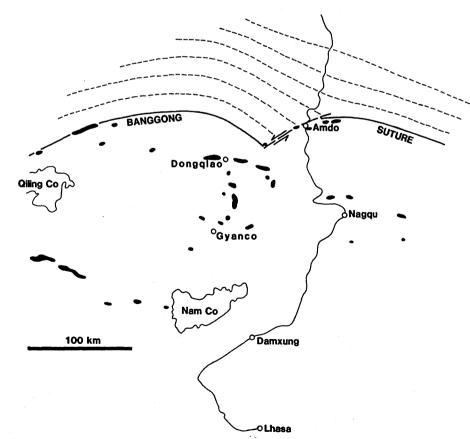


FIGURE 5. Sketch map of ophiolite occurrences in the Lhasa Terrane near the line of the geotraverse. Position of Banggong Suture and its concordance with the trend of folds in the southern Qiangtang Terrane (dashed lines) is indicated. Left-lateral strike-slip offset of the suture occurs near Amdo, coincident with truncation of the Qiangtang fold trends.

GEOLOGICAL MAPPING

occurrences shown on the Geologic map of the Qinghai-Xizang Plateau, become parallel with these folds farther east and west (figure 5). The Amdo strike-slip zone, however, does not appear (from LANDSAT image interpretation) to extend obliquely into either the Qiangtang or Lhasa Terranes and its strike-slip displacement is therefore likely to have been accommodated by additional thrusting in the general vicinity of the suture beyond the ends of the Amdo range.

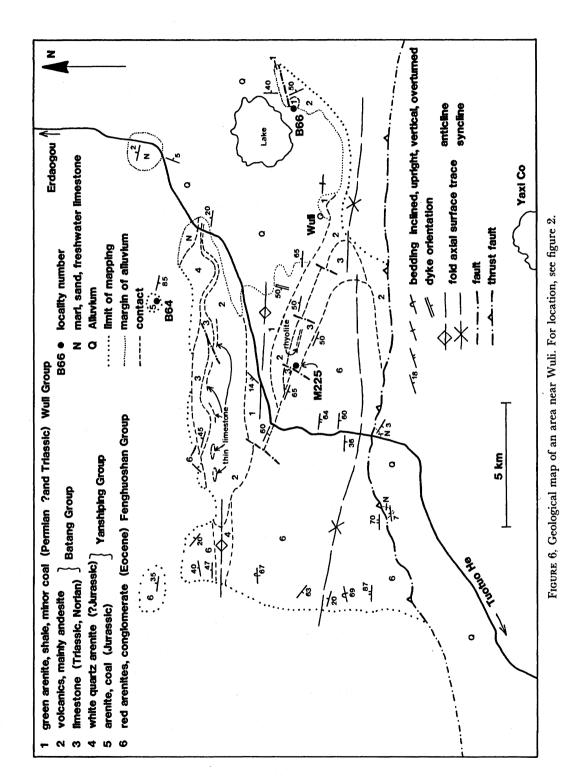
(d) Tuotuo River–Wuli area

Mapping in this area (figure 6) was aimed at understanding the relationship between the Eocene red clastics of the Fenghuoshan Group and the underlying Triassic Batang Group carbonates, andesitic volcanics, and clastics, and Jurassic Yanshiping Group clastics. The map shows that an angular unconformity occurs at the base of the Fenghuoshan redbeds but, from measured dips, and from the limited truncation of the underlying Batang Group (figure 6) it is concluded that the latter was only gently folded, at least in this area, prior to redbed deposition. The relations of the Yanshiping Group to this unconformity were not determined conclusively. However, if the extremely pure pale quartzite seen along part of the northern outcrop of the Batang Group is at the base of the Jurassic sequence, its occurrence at two places below redbeds to the north near Erdaogou (figure 7) suggests little discordance between the redbeds and the Jurassic sequence, as long as the latter is of modest thickness in this area. Previous maps show the volcanics and carbonates below the redbeds near the main road as of Permian age, correlative with the Wuli Group, (see Yin *et al.*, this volume). The lithologic types and sequence, and the fossils of Norian age in the limestones at locality M225 (Smith & Xu, this volume) show that these strata belong to the Triassic Batang Group.

Structures observed (vein and fracture sets, slickensides) in the well-lithified redbeds of the Fenghuoshan Group on the southern edge of this range indicate southward overthrusting over adjacent poorly-lithified marls and sands (presumed Neogene in age). Unlike the Erdaogou area (see below), no strong evidence for Quaternary thrusting was seen here, but most of the folding of the strata in this area is of Tertiary age. The implications of this observation for the age of folding in the Qiangtang Terrane as a whole are discussed below.

(e) Erdaogou area

Upright folds and mostly northward-dipping thrust faults in the Eocene Fenghuoshan Group redbeds must be related to crustal shortening during the India-Asia collision. The map of this area (figure 7) and the cross-section derived from it (see Coward *et al.*, this volume) yield substantial shortening values, a minimum of about 40% by folding alone. The LANDSAT image and the topographic maps give a fairly clear idea, from well-developed stratification trends, where the major folds and thrusts are located. With the distributed ground observations, including abundant younging indicators in the redbed arenites, most of the structures shown are identified with confidence.


A prominent thrust outcrops in the southernmost range of hills placing the well-lithified Eocene red arenites over soft red marls and pale sands that are presumed from their state of lithification to be younger than the Eocene strata. A well-exposed small thrust duplex of the lithified red arenites occurs in the flank of the hill on the east bank of the river Qu Ma Liu (Moron Us; Leeder *et al.*, this volume) adjacent to the main road (locality M191), and a similar imbrication, in this case involving the young marls, is seen about 7 km west of this point. Evidence for very young (Quaternary) thrust tectonics is suggested by the presence of an

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

PHILOSOPHICAL THE ROYAL MATHEMATICAL TRANSACTIONS SOCIETY & BENGINEERING 298

W. S. F. KIDD AND OTHERS

GEOLOGICAL MAPPING

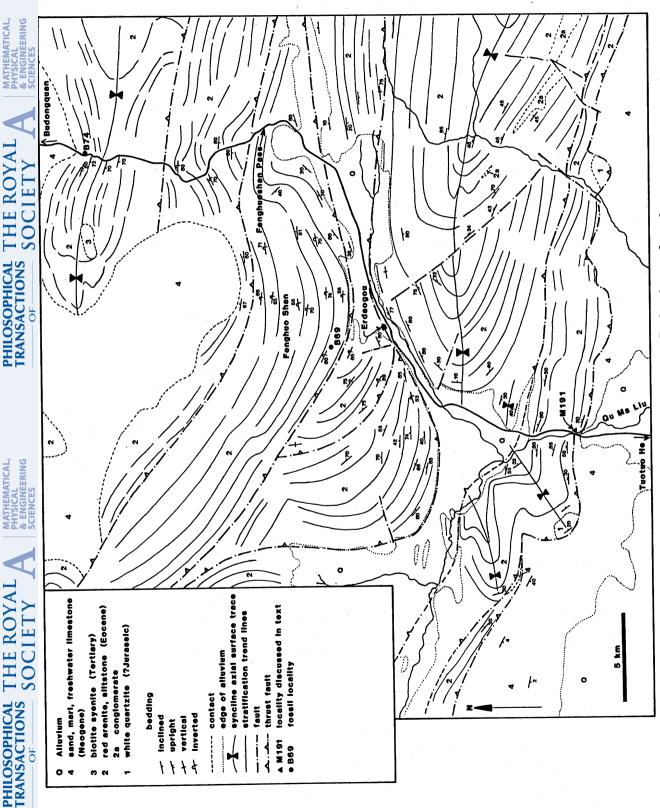


FIGURE 7. Geological map of the Erdaogou area. For location, see figure 2.

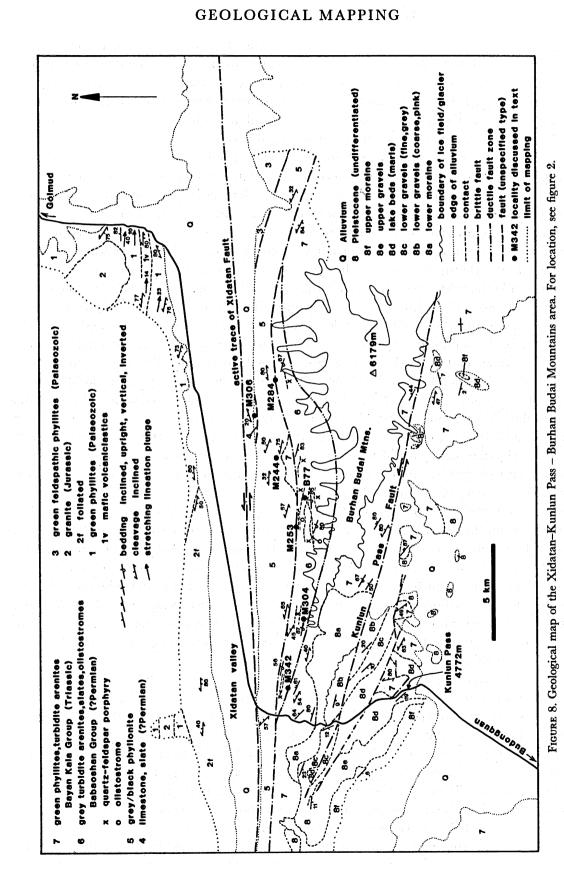
incised meander in a small side valley joining the east side of the valley of the Qu Ma Liu (Moron Us), where the thrust outcrops by the main road (locality M191). The local antecedent relationship that this river, and others like it farther east, has with this southernmost range of the Fenghuoshan also suggests late Neogene-Quaternary uplift, most likely by movement on this thrust (see Kidd & Molnar, this volume and Leeder *et al.*, this volume).

(f) Xidatan Valley-Burhan Budai Mountains

The Burhan Budai mountains form the southern side of the Xidatan valley, which marks the location of the main strand of the Kunlun Fault system, a major left-lateral strike-slip zone (see Kidd & Molnar, this volume). The bedrock on the southern side of this valley was mapped (figure 8) to try to determine the nature and age of the contacts between the several contrasting rock units that occur there, and to see whether any of the faults related to the Kunlun Fault.

A prominent ductile high strain zone in the form of a grey-black phyllonite unit several hundred metres thick occurs at lower elevations on the southern margin of the valley. The thickness suggests that it must be a zone of major displacement. The phyllonite contains a single strong phyllitic foliation dipping on average moderately to steeply north. Boudinaged quartz veins are common in this foliation. It is affected by a pervasive set of outcrop-scale open to tight folds with gently-dipping axial surfaces and gently east- or west-plunging hinge lines. Both these later folds, and a less intense to phyllitic cleavage are seen in the two major structural blocks to the south of the phyllonite; that is, all the bedrock south of the Xidatan in this map area shares the same outcrop-scale structural sequence, which is thought from regional evidence to have been formed in late Triassic – early Jurassic times.

In one locality (M306), north of the phyllonite, dark grey highly-strained limestone and pale-coloured pure limestone in variably disrupted thick beds occur in a melange-like disrupted grey slaty matrix. Evidence in outcrop of south-directed thrusting (offset layers, asymmetric folds) suggests that this material perhaps formed part of the hanging wall to the phyllonite, in which evidence of south-directed thrust-sense shear (asymmetric boudins of veins, shear-band cleavage) was also seen locally.


However, at the eastern end of the mapped area, green phyllitic rocks, partly arenaceous and feldspathic, resembling those seen structurally below the carbonates farther east in the Dongdatan area, occur to the north of the phyllonite. Either a large lateral ramp structure, or (perhaps more likely) the original occurrence of the carbonates in an imbricate slice adjacent to the phyllonite, are needed to explain this change, unless the carbonates form part of a slice bounded by a younger strike-slip fault and have been displaced many kilometres from the nearest source to the east. As the contact between the carbonates and the phyllonite is not exposed, this problem cannot be resolved without further mapping.

The southern boundary of the phyllonite is, in most places, a brittle subvertical fault that truncates the phyllonite foliation. In one locality (M244), by contrast, a short section of strongly-foliated green phyllites with thin arenite layers occur under a contact with very dark phyllonites, the contact dipping north concordant with the cleavage. Because this occurrence is so restricted, it is unclear whether this represents the footwall of the phyllonite zone or just a lens of somewhat less-strained rock within it. The brittle fault that truncates the phyllonite elsewhere was found exposed in only one locality (M284), where layering and foliation is locally folded on both sides within about 5 metres of the fault. The fault itself consists of gouge about

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

1 metre wide largely derived from the phyllonite. Vertically-plunging asymmetric minor folds of foliation adjacent to the gouge and in larger intact wall-rock lenses within the gouge, oblique S-C foliation in some of these lenses, and horizontal groove slickensides all suggest left-lateral strike-slip displacement on this fault. The displacement sense and the dominantly brittle character imply that it is related to the present Kunlun Fault system but there is no geomorphological evidence for Quaternary activity on this fault.

West of the main road, and eastward from near the east end of the Xidatan valley, this fault places phyllonite against steeply north-dipping well-foliated green phyllites and thin quartzose turbidite arenites of the Bayan Kala Group (figure 8). Along much of the length of the Xidatan valley, however, a lens up to about 2 km wide intervenes, which consists dominantly of steeply north-dipping, south-younging (and upward-facing) grey quartzose turbidite arenites and slates (Babaoshan Group). These seem not as strongly deformed or metamorphosed as the green phyllitic turbidites to their south, based on the intensity and appearance of foliation development in the pelites in each unit. Well-preserved flute and groove marks are seen on bed bases in a number of localities. Thick olistostromal deposits are exposed in two sections (localities M253 and M304). At the first locality, limestone, quartzose arenite, and calcareous quartz arenite clasts, most 10 cm or less across, but with a few up to 5 m across, occur in a dark grey shaly (slaty) matrix. At the other locality, a single fossiliferous limestone boulder 10 m long is exposed in shale. Because these submarine mudflow deposits only appear locally within the turbidite sections it is inferred that they are confined to channels. A few silicic tuff beds up to 10 cm thick are seen in the turbidites in at least one section (near M284). In every section examined in these rocks, there are somewhat irregular sills, typically 100-300 metres thick, of badly-altered, epidotised quartz-feldspar porphyry that occupy about 20-30% of the section. These are clearly intrusive into both the olistostrome and the turbidites and were intruded prior to development of the single cleavage.

The southern contact of the tectonic lens containing this assemblage of lithologies was seen in one valley (locality M342); elsewhere it is mostly covered by the icefield on the higher parts of the Burhan Budai, or (at the main road) cut by the younger strike-slip fault on the northern side of the lens. At M342 a zone about 150 m wide appeared to be a syn-cleavage fault with mixing of lithologies from both sides. Rather poor shear sense indicators (oblique S-C type cleavage) suggest north-over-south thrusting on the now subvertical zone. Abundant float presumed to be derived from this zone, consisting of highly transposed quartz veins in a dark pelitic matrix, was seen in the valley of locality M284; the source, somewhere above the snout of the glacier, could not be reached.

One other narrow section of rocks has been reported to be within the Babaoshan Group. This occurs at locality B77 where a small section (about 25 m) of arenites, shales, tuff, and a coal bed with Mesozoic plant fragments is exposed (Yin *et al.*, this volume). The coal and the associated fluvial sediments seem unlikely lithological associates of the turbidites and olisto-stromes that make up most of the Babaoshan Group. Perhaps this occurrence is a block in the olistostrome that occurs in the adjacent valley. Alternatively, it may perhaps occur in a separate tectonic lens ("horse") along the northern boundary fault. In the latter case it could be related to the clastics with local red beds and coaly beds seen about 50 km east in the Dongdatan, and which overlie folded Permo-Triassic rocks with angular unconformity.

The Pleistocene sequence near the Kunlun Pass (figure 8) is regionally tilted to the SSW, and locally dips as much as 23°. This deformation is connected, but not in a precisely understood

PHILOSOPHICAL TRANSACTIONS

0F

GEOLOGICAL MAPPING

way, with the interaction of the Kunlun Pass Fault and the Xidatan Fault, because the area of maximum tilting is in the zone where the faults approach one another. The apparently irregular distribution of outcrop of the Triassic Bayan Kala Group south of the Kunlun Pass Fault (figure 8) is largely due to palaeotopography. South- to southwest-trending valleys filled by the Pleistocene sequence alternate with ridges of the Triassic arenites and phyllites; the ridges terminate to the south because of the southerly tilting.

4. PROBLEMS NEEDING FURTHER MAPPING

Some geological problems can be solved by examining a single good exposure or section, but others require well-distributed information (in other words, mapping) for their solution. It is, in many cases, only by looking systematically and in detail through an area that some of the key localities and sections are found, and the variability assessed in stratigraphic and structural sequences and other features. We contest vigorously the idea that all, or everything of significance, is solved by one geotraverse. This is particularly true where outcrop is discontinuous and the structure complex, as along most of the traverse route. In the interest of brevity, only a few questions are raised here; in other words, the discussion below is not comprehensive.

The timing of the beginning of the collision between the Lhasa and Qiangtang Terranes is poorly known, and it is not known whether the late Jurassic uplift of the Dongqiao ophiolite is indicative of thrusting of ophiolite onto continental lithosphere of the Lhasa block ("obduction") or reflects some other intra-oceanic event. This is so because the relations between the Triassic platform carbonates of the Lhasa Terrane and the Jurassic flysch are ill-defined. Was the flysch deposited over carbonates and continental basement and, if so, when did it start? Conversely, was it tectonically transported from an oceanic environment significantly later than its depositional age? The significance of the isolated occurrences of Triassic carbonate turbidites could be related; do they represent a response to platform rifting or are they an early response to thrust loading of the Lhasa Terrane? The basic relationships and ages of these strata will have to be established by mapping to answer these questions.

Also in the Lhasa Terrane, only extensive accurate mapping of the mid Cretaceous and younger rocks will yield useful estimates of the crustal shortening that there has been prior to and subsequent to mid-Cretaceous times, essential information for testing crustal thickening models for the India-Asia collision. Similar comments are applicable to Tertiary rocks elsewhere on the plateau, although our mapping near Erdaogou (see above) illustrates that modest efforts can quickly improve understanding.

There is still a large question to be answered about the age of folding in the Qiangtang Terrane. In the north, around Wuli, most of the shortening is younger than Eocene (see paragraph 3d above). In the southernmost part, just north of Amdo, the folding of the mid and late Jurassic strata predates some of the redbeds (paragraph 3c above). The problem rests on the age of those redbeds; are they Cretaceous, or are they Tertiary, and could the folding be Tertiary as it is in the north? If the folding in the south is Cretaceous, where in the Qiangtang Terrane does the change occur to the younger deformation seen in the north?

Besides the obvious need to define what lies below the Jurassic covering the southern twothirds of the Qiangtang Terrane along the traverse line, the relationship of the Triassic Batang Group arc volcanics to Permian rocks is ill-defined. Could the arc volcanics be allochthonous, overthrust from the Jinsha Suture?

For the Kunlun Terrane, systematic mapping will reveal the large-scale structural relations of the Permo-Triassic sections north of the Xidatan Fault to older rocks (cf. Coward *et al.*, this volume) – essential information in understanding the tectonic significance of these Permo-Triassic rocks (were they deposited in extensional basins?). Although isotopic ages may help to solve the problem of whether there are one or two sequences of volcanics in the northern Kunlun, and whether they are Devonian, Carboniferous, or Permo-Triassic, mapping would contribute greatly to the confidence placed in the ages, if it revealed the original relationship(s) of the volcanics to the Carboniferous strata, for example.

As a final and more general problem, the location of sutures and the occurrence of ophiolites are critical to the interpretation of the assembly of the crust of the Qinghai–Xizang Plateau.

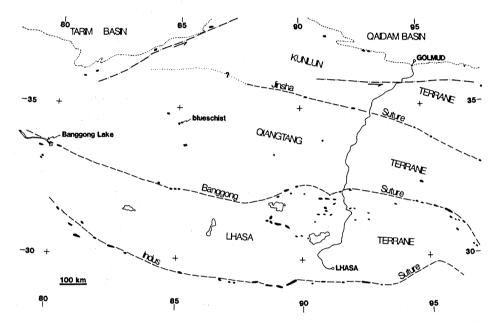


FIGURE 9. Sketch map of ophiolite occurrences in the central and western parts of the Qinghai–Xizang Plateau, with the known sutures indicated. Ophiolite and blueschist occurrences within the Qiangtang Terrane may indicate the presence of one (or perhaps more) additional sutures.)

Figure 9 shows the occurrence of ophiolites from the 1:1.5 million scale Geological Map of the Plateau, with the addition of two localities from the samples and detailed topographic maps of Hedin (Hennig 1915). The ophiolites scattered across the Lhasa Terrane south of the Banggong Suture are thought, from mapping, to be remnants of a large nappe (Girardeau *et al.* 1984, 1985, Chang Chengfa *et al.* 1986). However, the nature of the ophiolite and blueschist occurrences within what is currently identified as the Qiangtang Terrane are unknown. This possible suture within the Qiangtang Terrane is as well if not better defined, at least by ophiolites, than much of the length of the Jinsha Suture. Whether this is an additional suture, and whether it might help explain the odd distribution of Gondwana-type Carboniferous– Permian at the western end versus Cathaysian-type at the eastern end of the Qiangtang Terrane, are questions that could be answered by detailed mapping of these purported ophiolites and their surroundings. Similar comments apply to the possible occurrence of small arc-type terranes and an additional suture within the southern Kunlun and Songpan–Ganzi area east and southeast of the northern part of the geotraverse route.

PHILOSOPHICAL TRANSACTIONS

Б

GEOLOGICAL MAPPING

We thank David Rothery for his work in selecting and producing the LANDSAT imagery used for the geotraverse. Kevin Burke and the Lunar and Planetary Institute are thanked for access to image processing facilities and for loan of enlargements of Large Format Camera images.

We also thank Susan L. Anderson for design and much of the drafting of the 82 detailed geological data maps reproduced here on microfiche, the Department of Geological Sciences, State University of New York at Albany, for providing essential equipment and material supplies for the drafting of these maps, and Diane Paton for typing the microfiche-reproduced tables. Pan Yun and Wang Ping are thanked for translating Chinese geographic names from the topographic maps.

References

- Burg, J. P. (compiler) 1983 Carte géologique du sud du Tibet (1:500,000 scale). C.N.R.S., Paris, and Ministry of Geology, Beijing.
- Chang Chengfa & 26 others 1986 Preliminary conclusions of the Royal Society and Academia Sinica 1985 geotraverse of Tibet. Nature, Lond. 323, 501-507.
- Girardeau, J., Marcoux, J., Allègre, C. J., Bassoullet, J. P., Tang Youking, Xiao Xuchang, Zao Yougong & Wang Xibin. 1984 Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature, Lond. 307, 27-31.
- Girardeau, J., Marcoux, J., Fourcade, E., Bassoullet, J. P. & Tang Youking 1985 Xainxa ultramafic rocks, central Tibet, China: tectonic environment and geodynamic significance. *Geology* 13, 330-333.
- Hennig, A. 1915 Zur petrographie und geologie von sudwest-Tibet. Vol. 5 in Southern Tibet (ed. S. Hedin), 220 pp., Norstedt, Stockholm.
- Ministry of Geology and Natural Resources 1980 Geological map of the Qinghai-Xizang (Tibet) Plateau (1:1.5 million scale). Ministry of Geology and Natural Resources, Beijing.

Molnar, P. & Tapponnier, P. 1978 Active tectonics of Tibet. J. geophys Res. 83, 5361-5375.

Qinghai Bureau of Geology and Mineral Resources 1981 Geological map of Qinghai Province (1:1 million scale). Qinghai Bureau of Geology and Mineral Resources, Xining.

Qinghai Bureau of Geology and Mineral Resources 1984 Geological maps of Golmud and Naij Tal sheets (1:200,000 scale). Qinghai Bureau of Geology and Mineral Resources, Xining.

Xizang Bureau of Geology and Mineral Resources 1979 Geological map of Lhasa sheet (1:1 million scale). Xizang Bureau of Geology and Mineral Resources, Lhasa.

Yin Jixiang, et al. (in press) Geological map of the southern Tethys of the Qinghai-Xizang Plateau (1:1 million scale). Institute of Geology, Academy of Sciences, Beijing.

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

THE ROYAL SOCIETY

PHILOSOPHICAL TRANSACTIONS

Armijo, R., Tapponnier, P., Mercier, J. L. & Han Tonglin 1986 Quaternary extension in southern Tibet: field observations and tectonic implications. J. geophy. Res. 91, 13803-13872.

K

KIDD et al.

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

THE ROYAL A SOCIETY

PHILOSOPHICAL TRANSACTIONS Appendix. Detailed maps of geological observations

Detailed Maps of geological observations to accompany Chapter 11 -Geological mapping of the 1985 Chinase-British Tibatan (Xizang-Qinghai) Platsau geodraverse route

W.S.F. Kidd, Pan Yusheng, Chang Chengfa, M.P. Coward, J.F. Dewey, A. Gansser, P. Nolnar, R.N. Shackleton, Sun Yiyin.

Maps compiled by J.F. Dewey and W.S.F. Kidd; revised and drawn by W.S.F. Kidd

Originals plotted and drawn on topographic map base at 1:100,000 scale. A full set of original topographic map sheets, and another full set with (unrevised) geological data and localities plotted during tha traverse are deposited in the British Husseum (Natural History). Data shown on the maps reproduced here on microfiche have been checked against, and supplemented or revised from the map sheets and notes of the Royal Society participants of the geotraverse. A copy of the notes of most of the Royal Society participants is also deposited in the British Husseum (Natural History).

Nost of the topographic map sheets used are divided into east and west halves for these microfiche reproductions, identified by the index number or letter and as the east (2) or west (W) part. Hep sheets are identified by number or letter as given in the index map (Frame 2). A few sheets have only one portion taken from the centre; these are identified as centre (C) with the index number. Some sheets have been combined with adjacent sheets where the distribution of data permitted. In two cases, observations fall outside the area covered by available topographic base maps. These have been shown on bases taken from orbital-derived images (specifically LANDSAT and metric camera images).

The boundaries of the original topographic maps are nominally at 30 minute longitude intervals and 20 minute latitude intervals (Frame 2 index map) but do <u>not</u> necessarily coincide exactly with such geographic coordinates. Exact placement cannot be made from data available to the authors.

Where map boundaries are not exactly juxtsposed between two adjacent map sheets, an indication of the position of a map corner is given along the border of one of the two maps reproduced here

Locality and/or outcrop numbers on these maps are given with a latter and sequential number (e.g. H244). Any locality can be connected with the working group(s) that visited it by the latter used, according to the list below. Further details on any locality may be found in the notabook(s) of the member(s) of the particular group, deposited in the British Muweum (Natural History).

Working group latters used for localities on the maps

- Leeder, Smith (Stratigraphy, Sedimentology, and Palaeontology) Harris, Pearce (Geochemistry, Petrology and Isotopic studies) Molmar (Meotactonics) Kidd, Devey (Structure, Mapping) Kidd, Holnar (Mapping, Neotactonics, Structure) Unber 1 (Relpensembler) в
- н -
- N

- N Klot, Holmar (Rapping, Methecking)
 P Watts, Lin (Palaeomagnetism)
 S Goward, Shackleton (Structure, Mapping)
 T Gansser (Mapping)
 T samples ronumbered by G; from localities visited by B,H,S and T (see Frame 92).

Lists of all localities by group, keyed to the map sheet on which each occurs, are found on this microfiche (Frame: 86-92).

Acknowlodgments

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

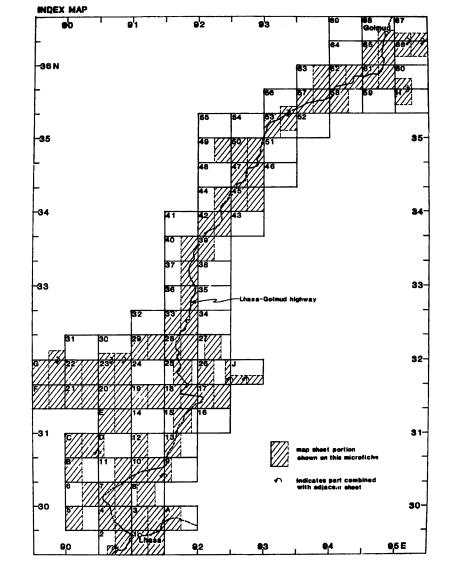
THE ROYAL A SOCIETY

PHILOSOPHICAL TRANSACTIONS OF

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

THE ROYAL A SOCIETY

PHILOSOPHICAL TRANSACTIONS 5 We thank Sugan L. Anderson for design and much of the drafting of these maps. Thanks also to Diane Paton for typing the tables, and the Department of Geological Sciences, State University of New York at Albany for providing assential equipment and material supplies.


Pan Yun and Wang Ping are thanked for their help in translating Chinese geographic names from the topographic maps.

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

TRANSACTIONS SOCIETY

EXPLANATION for symbols used on microfiche maps

Lithology indicators

Indicators have no age implications. Ages of Ili unite are ated on each coparate map shoot. a of plutonic rocks based on isotopic datas or nce relations ators are used in combination, the ney i ed dees not necessarily imply relative abunda erder es A number (e.g. Ra2) distinguishes one similar unit from seather on the same was sheet.

Bedimontary rocks and sodiments

Metamorphic rooks

Volgenic rocks

Vm --- mefic

Vmp -- pillow lave

Va --- andesite/dacite

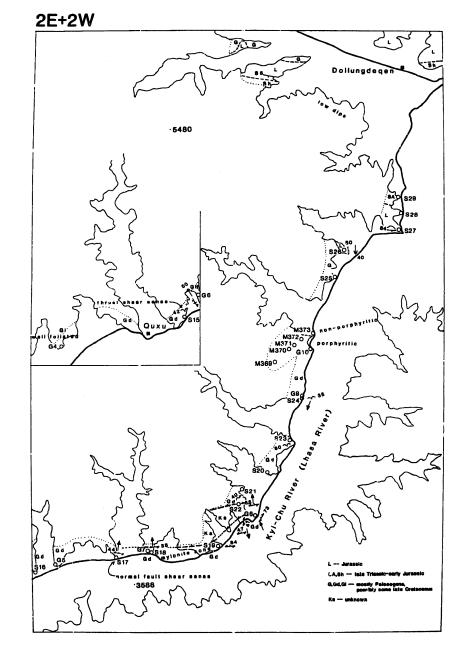
Va — rhyodaolte/rhyelita

Vc --- volcenicientics, tuff, agglamorate

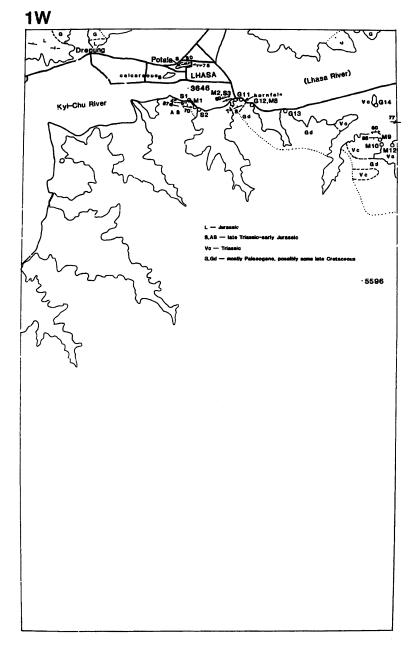
A grenita, gillolano	Kn — granitic gnoise		
Ra red granite, situtone	Ks — echist		
Q quartzite	Ke — amphibolite		
Al — Hysch	Sp — phyllite		
W wecke	Ph phylicalte		
81 elitatone	8v — phylitic/cleaved matic volcaniciestics		
Sh — shale	8 slats		
Sm — mudetone, argiliite			
Rm — red mudatone, slitstone, maristona	Mutania rocky		
8 ···· slata	FIERON C FOORF		
8a plistostrome	Q granits/sdemolite, or undifferentiated graniteid rocks Qd granodiarite Q1 diorits/stz dorite		
Cg conglomerate			
Cb breccia			
L limestone, carbonete	Gi diorita/qt2 di crita Gy evanita		
Log limestone conglomerats/breccis	uy — syama Vp — porphyty dikes and sills Bd — deficitie		
H chert			
F — coal			
E gypeum	9g gebbro		
Mi iako bodz,soft maris,sand	Bgp — gabbro â pyraxanta U — utremetic racka, aerpentinite		
Mg gravele			
Mo moraine			
T travertine			
	Other symbols		
edge of bedrock outcrop	OM244 locality/outgrop with number ass Frame 1 for explanation		
dirt road/treck	of prefix lettere CB67 ⁴ tossil-bearing iccality or section		
mein roed	Amdo town, village, or highway depoi		

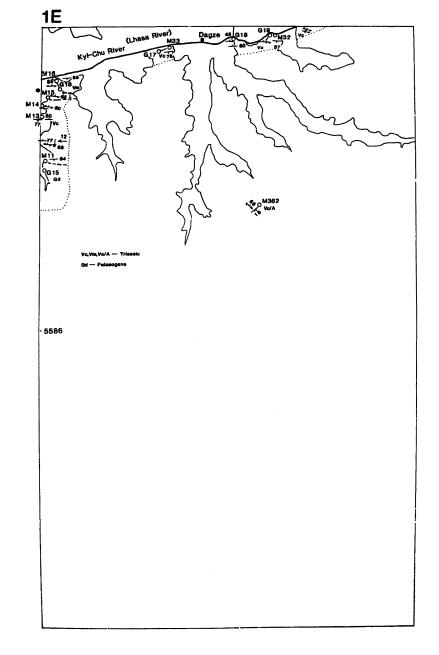
	edge of bedrock outerop	OM244	locality/outgrop with number see Frame 1 for explicit	
\sim	dirt road/treck	C B67≢	of profix letters fossil-bearing iccality or section	
	mein roed	= Amdo	town, village, or highway depol	
<u> </u>	limit of mapping	•	hot upring	
	geological contact	·6179	most height (metree) (highest and/or lowest specified	
	fault	\sim	isks elevations on map)	
	fault, with Quaternery movement			
┯╶┳╶╧╤ ┈	fault dispiscement; normal reverse strike-slip testh/licks in direction of dip			
رمرطورو:+	es bedding, flat, inclined, upright, vertical, overturn	ned: dips in degrees		
×	younging (in absence of bedding measurement)			
	ciezvage/phylitic clasvege, inclined, vertical			
	gneissic folletion/schistosity, inclined, vertica	4		
- ³ 66	Minor fault orientation			
R1	plungs of minor told hings (degress)			
75	plunge of fabric American (minoral, stretching)			
**	dike orientation			
		Scale		
Q	1 2 3 4 5	10	1 <u>5 2</u> 0	
E				

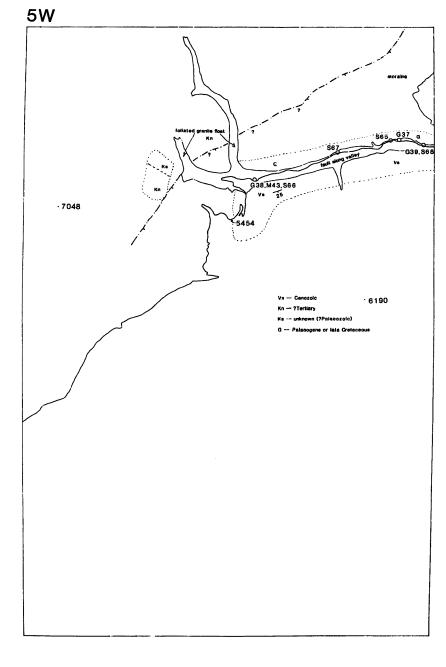
kilometres

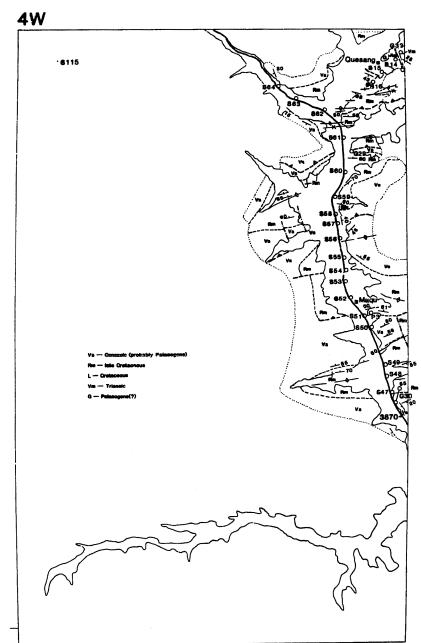

Maps drawn at 1:100,000. Base: PRC 1:100,000 topographic maps, most dated 1973-75 (see Frame 1).

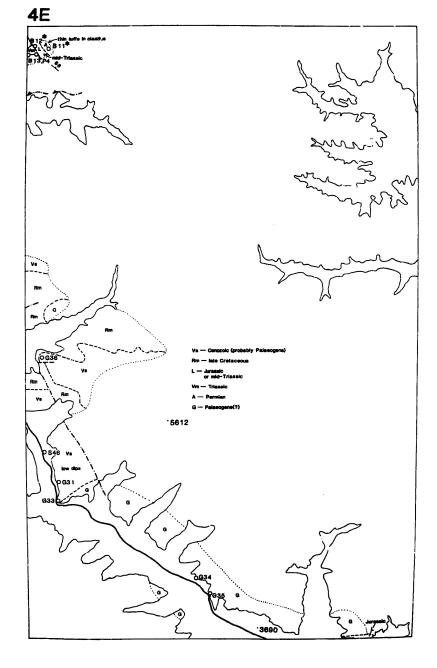
Mathematical, Physical & Engineering Sciences

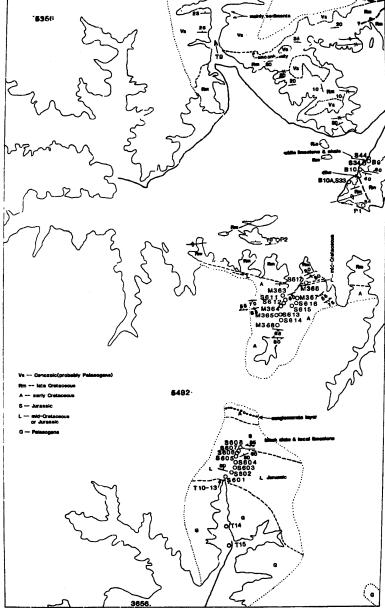


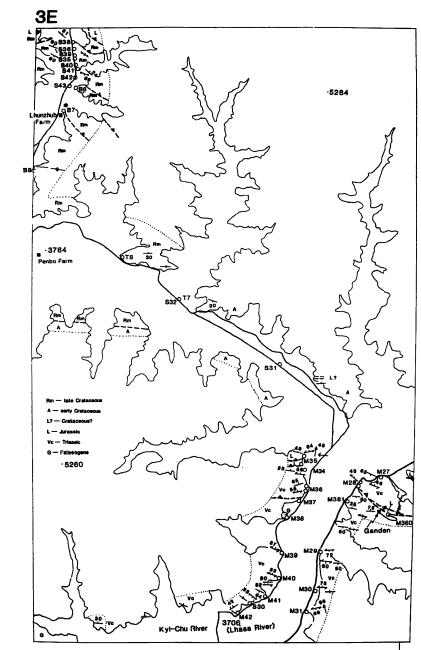




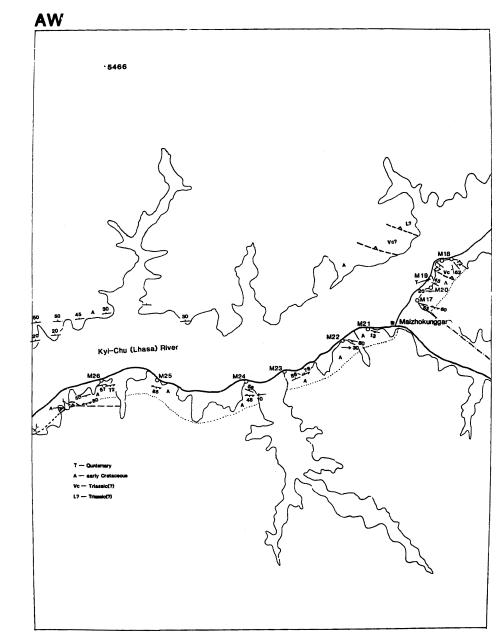








3W



MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

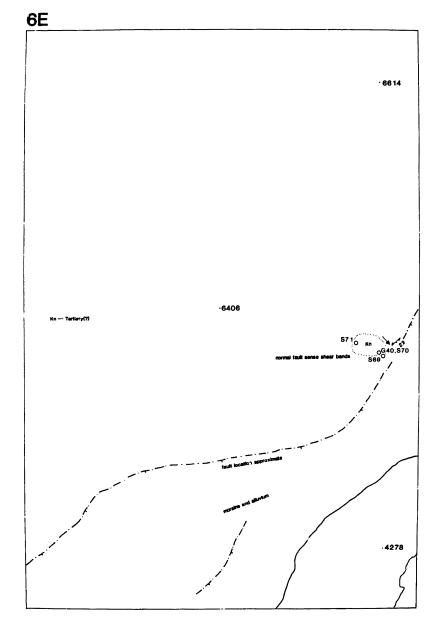
TRANSACTIONS SOCIETY

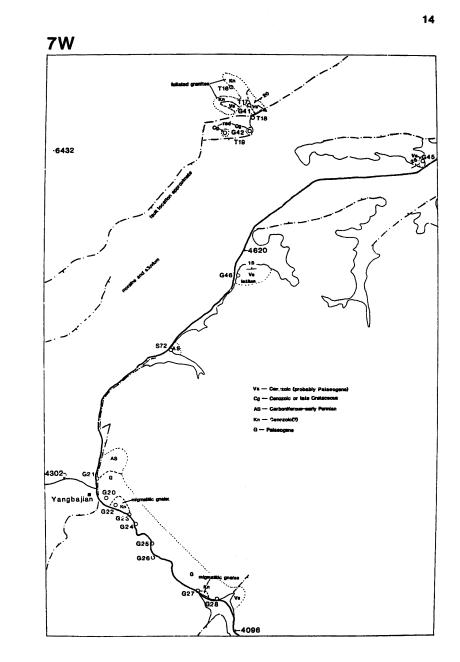
MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

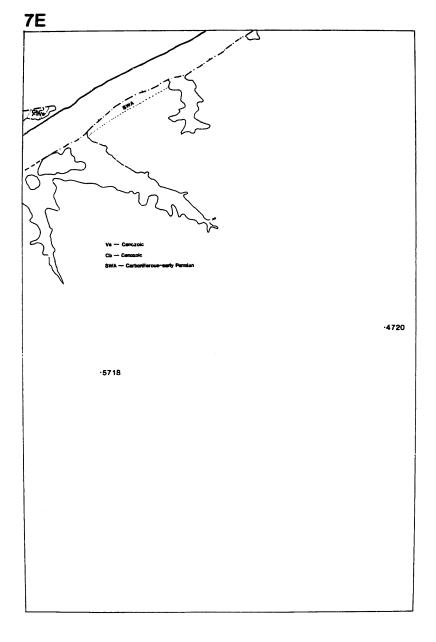
TRANSACTIONS SOCIETY

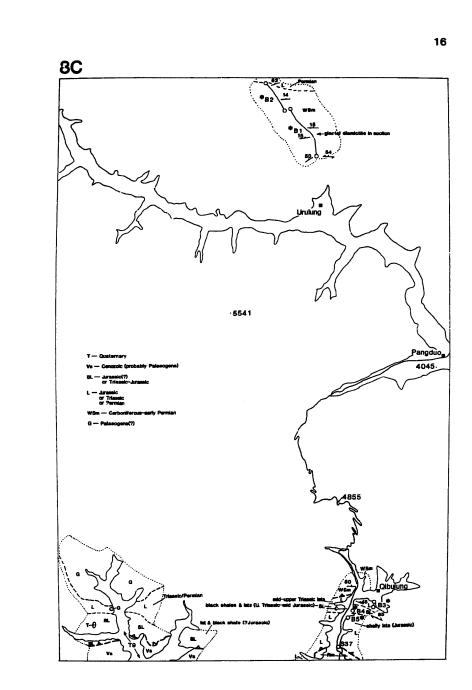

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES


TRANSACTIONS SOCIETY

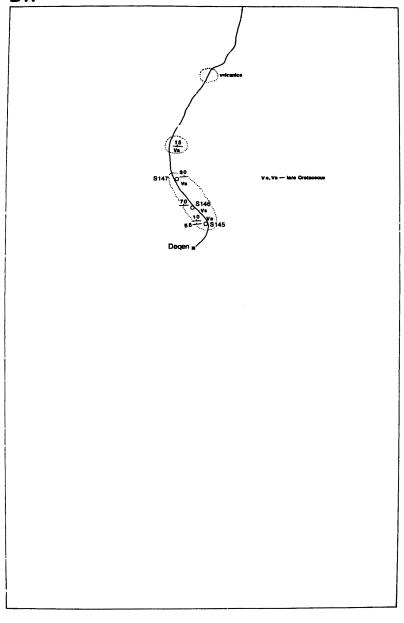
MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

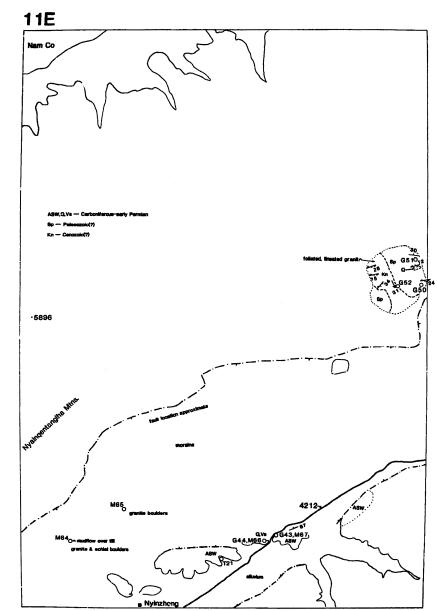
TRANSACTIONS SOCIETY

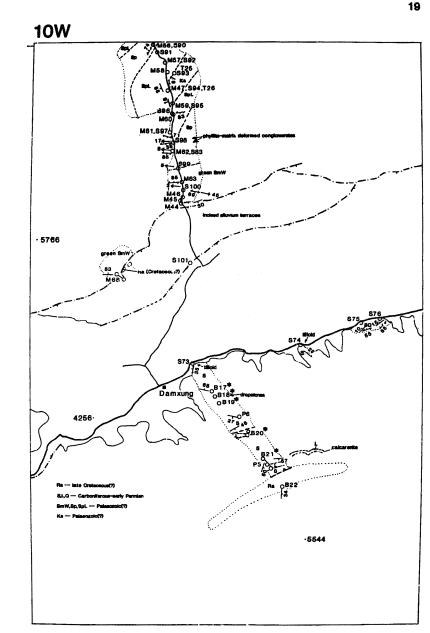

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES


TRANSACTIONS SOCIETY

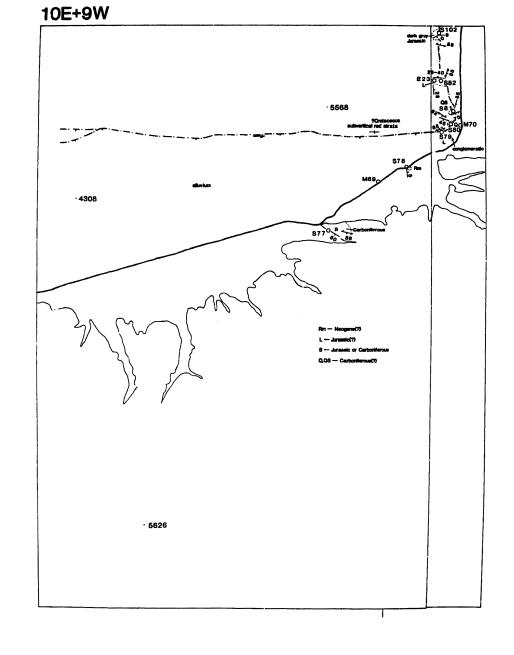
TRANSACTIONS SOCIETY

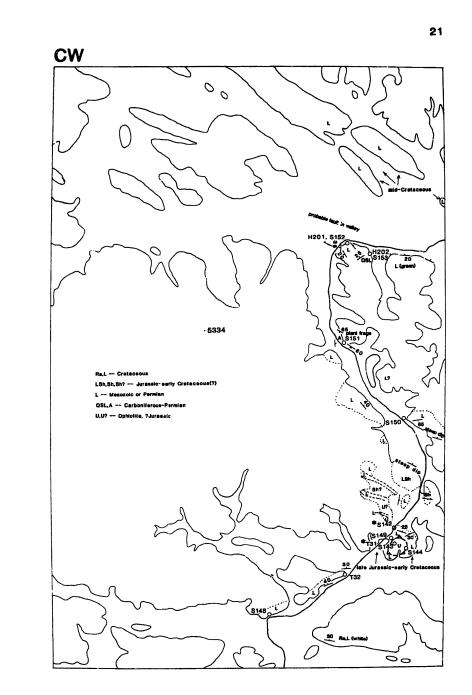


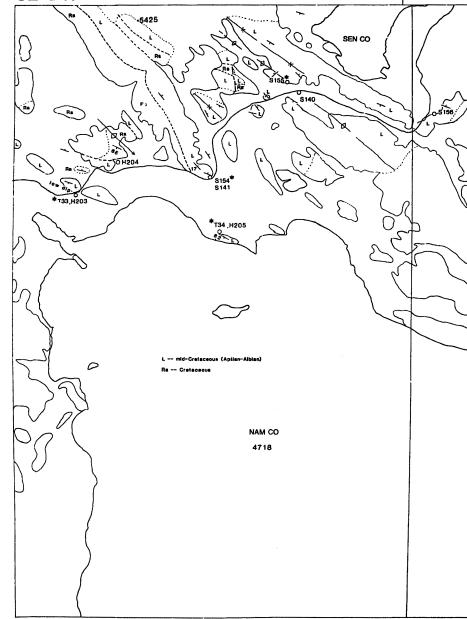




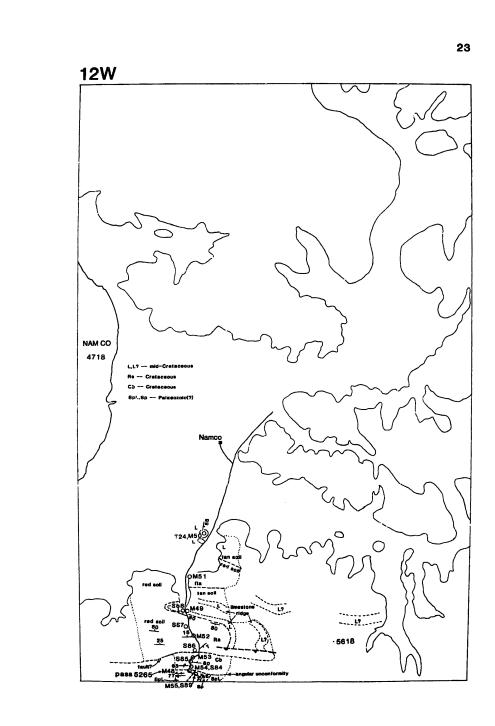
TRANSACTIONS SOCIETY


TRANSACTIONS SOCIETY


MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES TRANSACTIONS SOCIETY



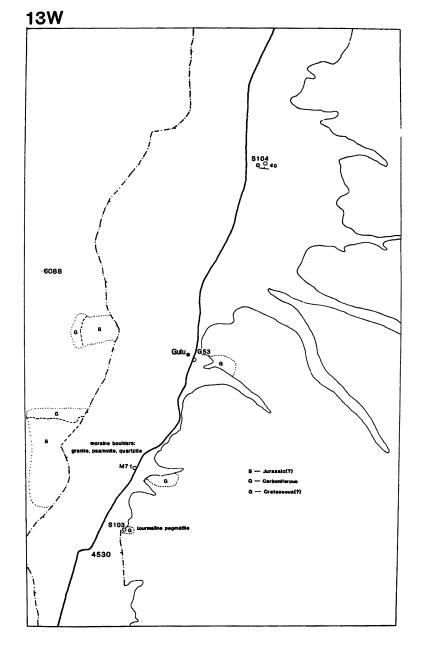
TRANSACTIONS SOCIETY


MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

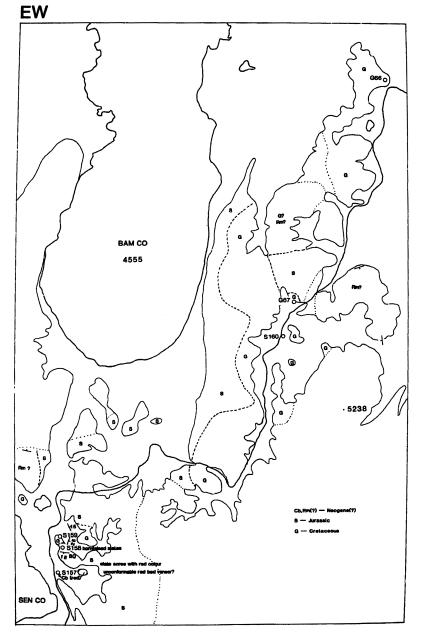
TRANSACTIONS SOCIETY

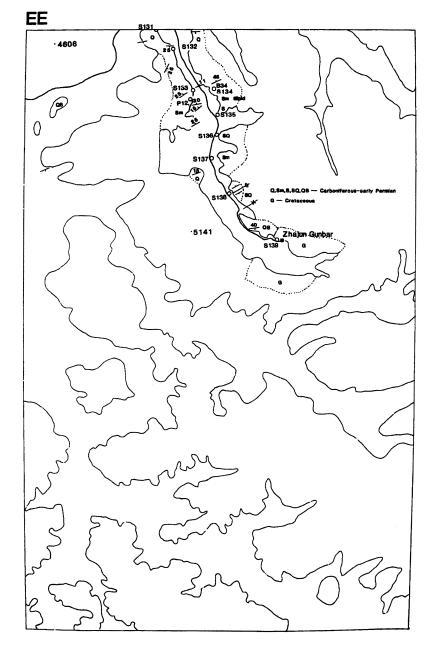
CE+DW

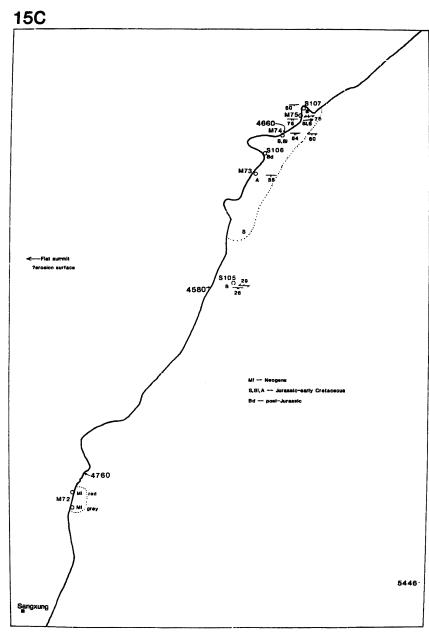
TRANSACTIONS SOCIETY

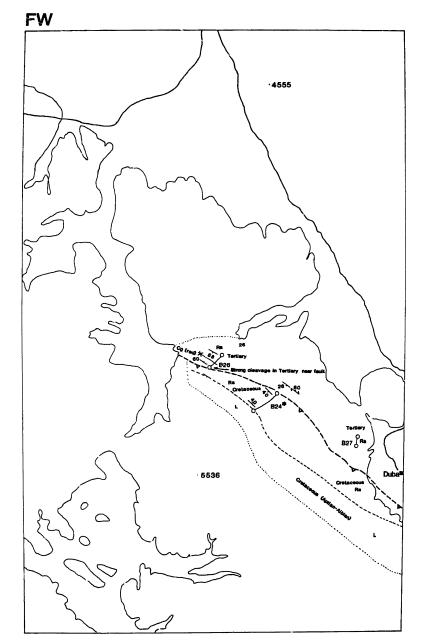

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

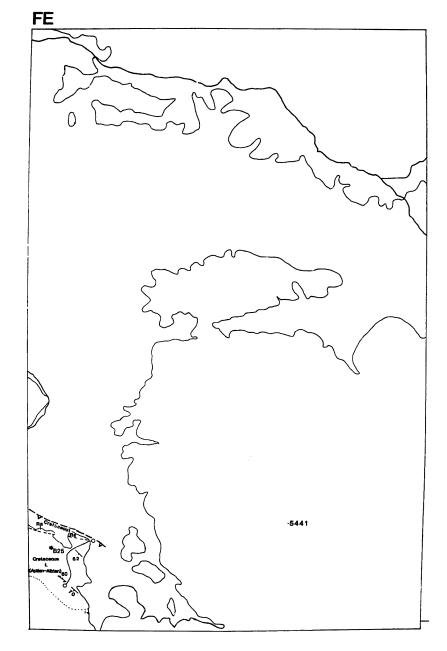
TRANSACTIONS SOCIETY

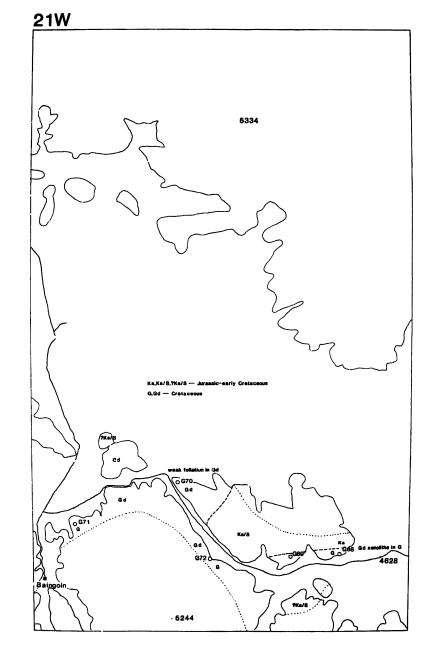


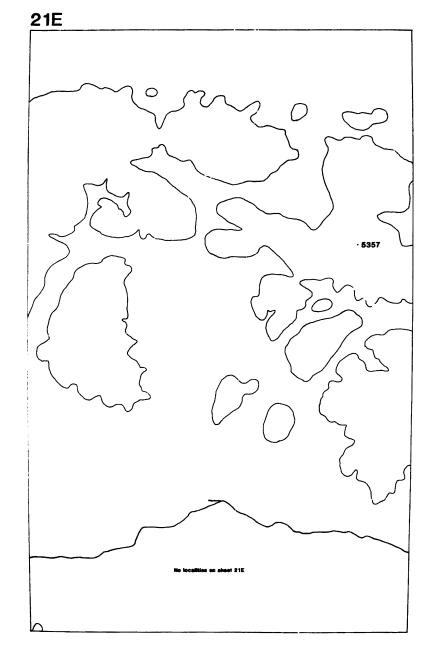

PHILOSOPHICAL THE ROYAL MATHEMATICAL, TRANSACTIONS SOCIETY Sciences

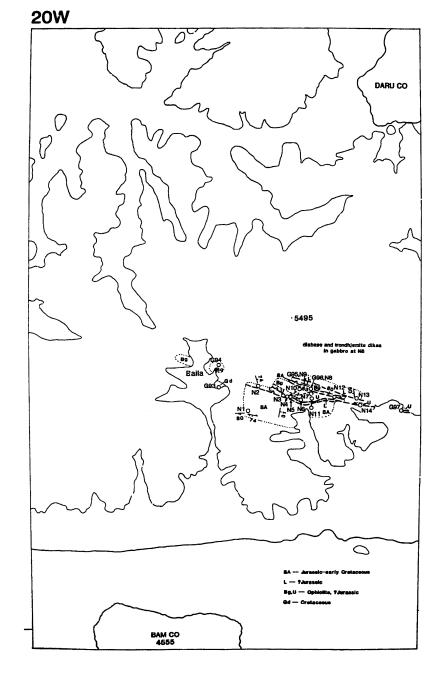


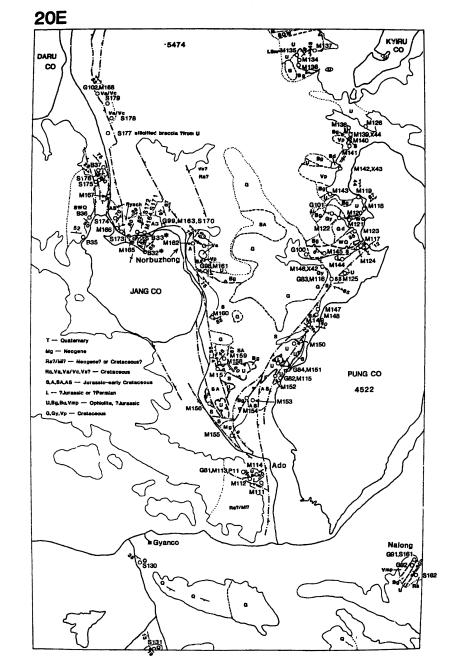




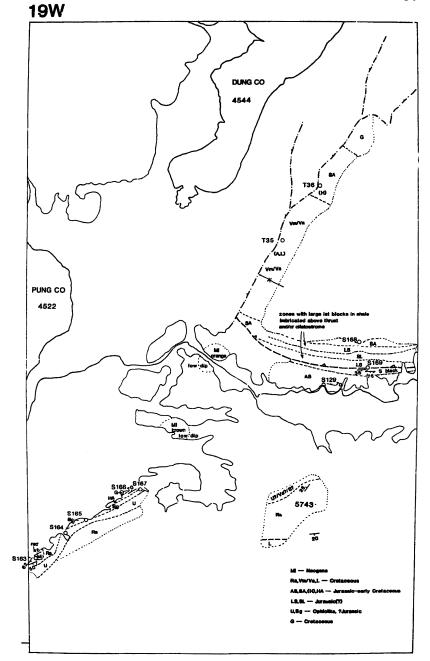


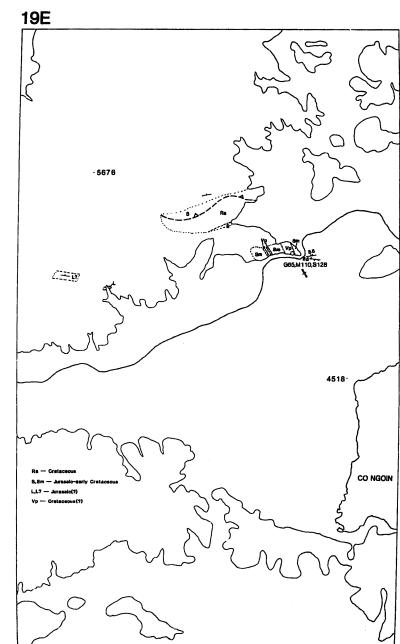






TRANSACTIONS SOCIETY

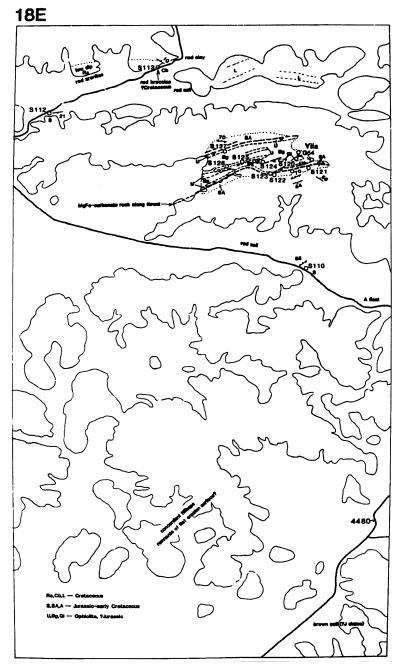

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES


PHILOSOPHICAL THE ROYAL MATHEMATICAL, TRANSACTIONS SOCIETY Sciences

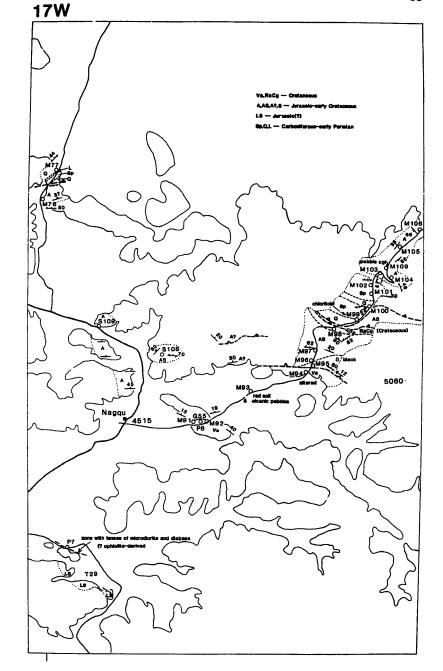
TRANSACTIONS SOCIETY

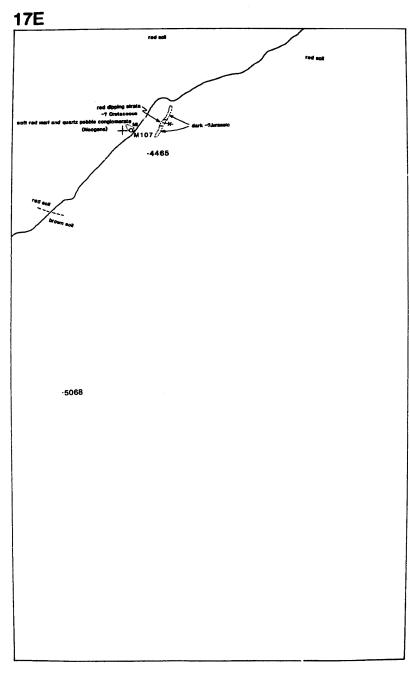
MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

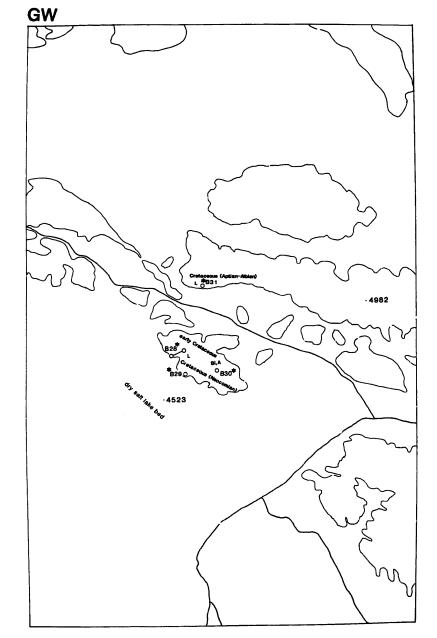
TRANSACTIONS SOCIETY

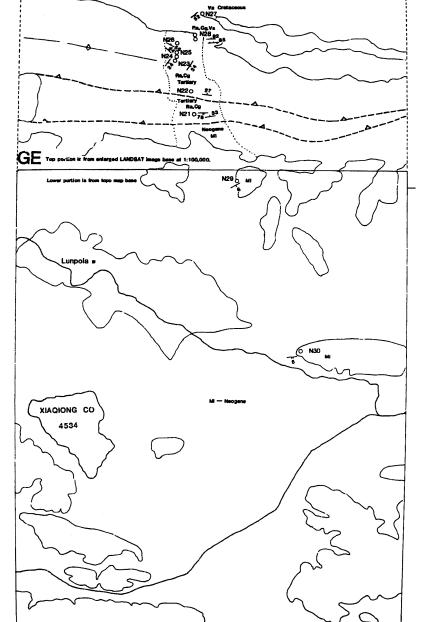


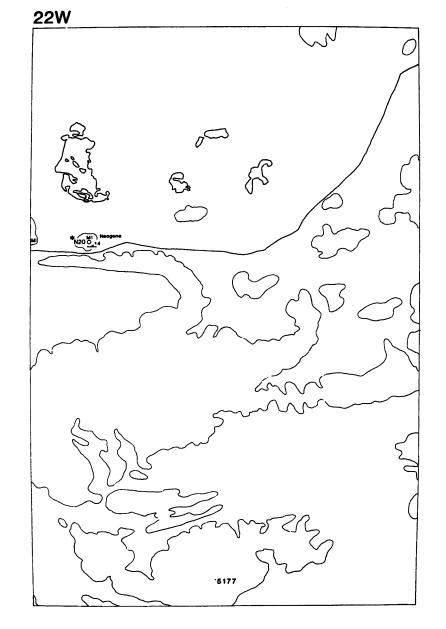
18W ·5170 58111 4559/ CO NGOIN

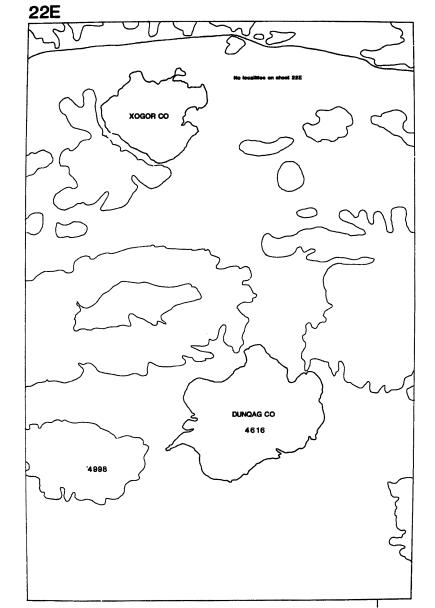

PHILOSOPHICAL THE ROYAL MATHEMATICAL, TRANSACTIONS SOCIETY Sciences

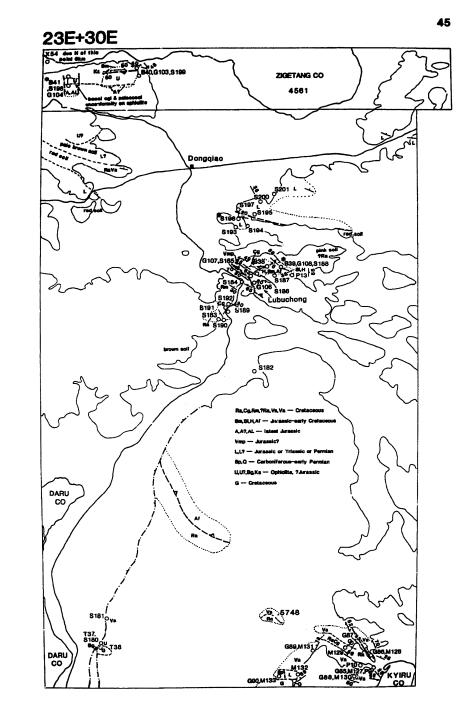












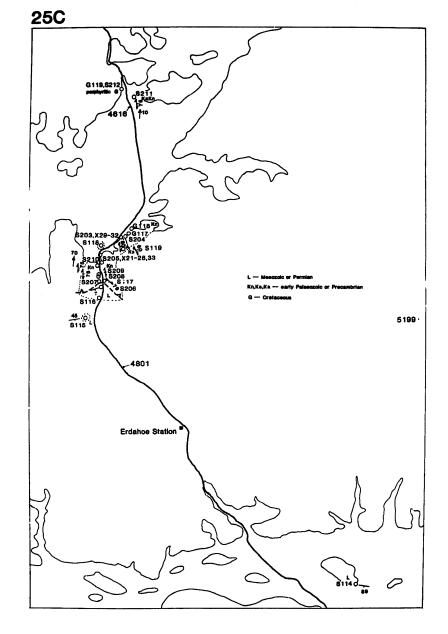
23W+30W

G113 G111 G115 G112) G106 etronita In Instala -U \mathcal{O} 0 • 665 1

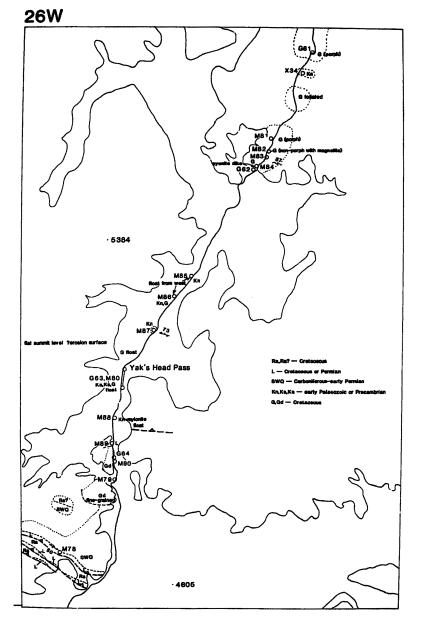
44

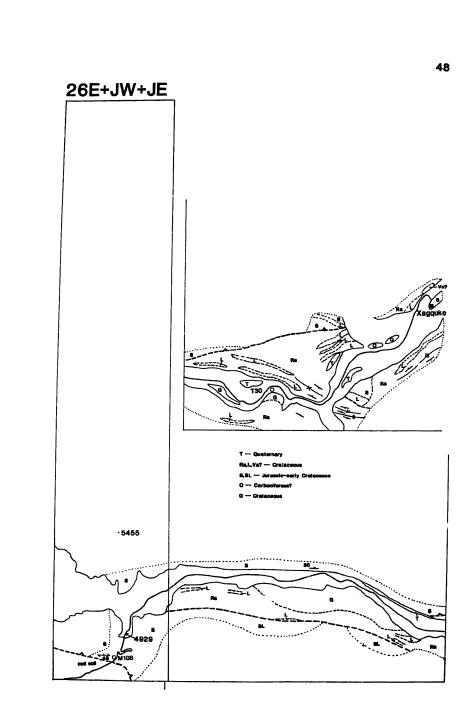
DARU CO

TRANSACTIONS SOCIETY

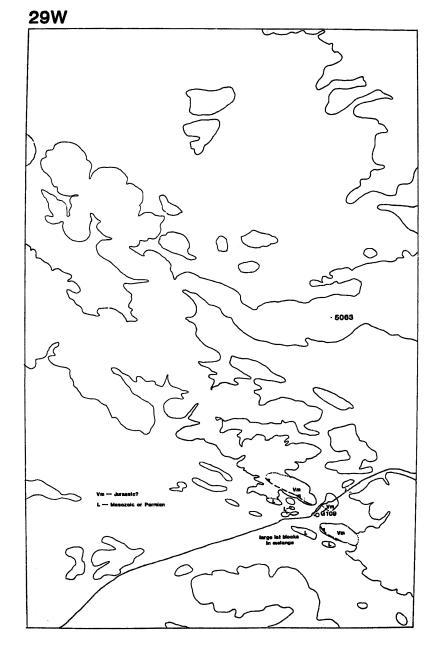

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY 1

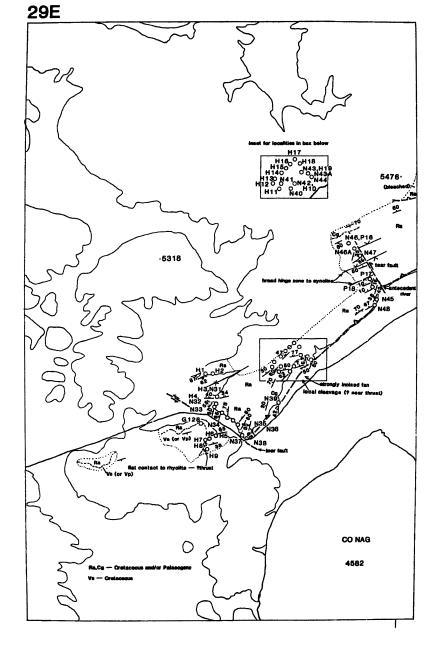


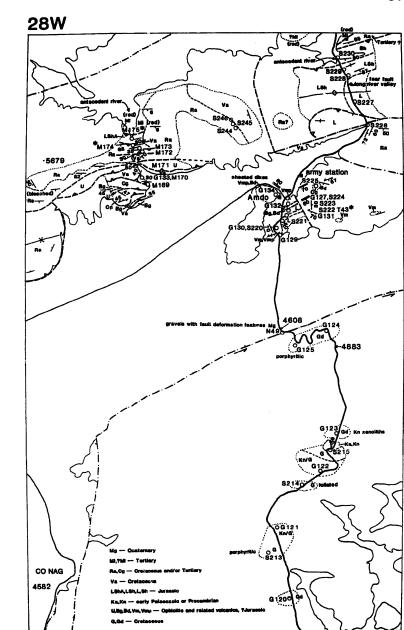


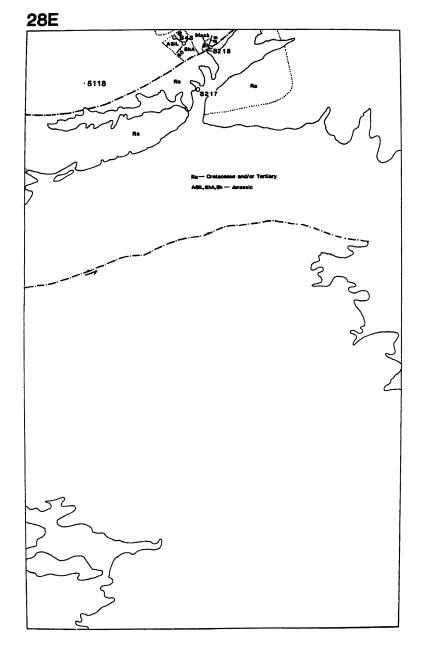
TRANSACTIONS SOCIETY 1

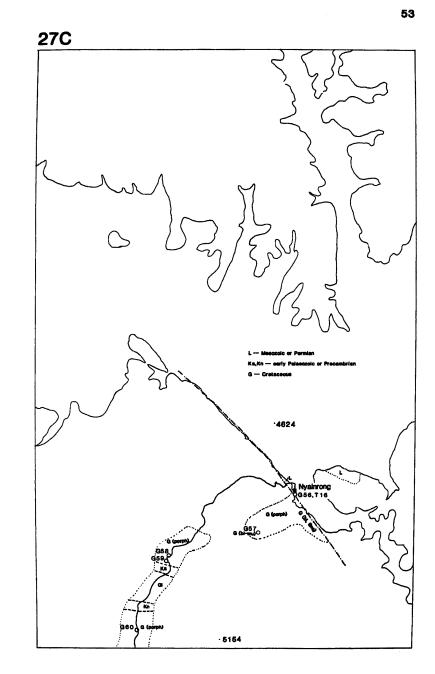

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

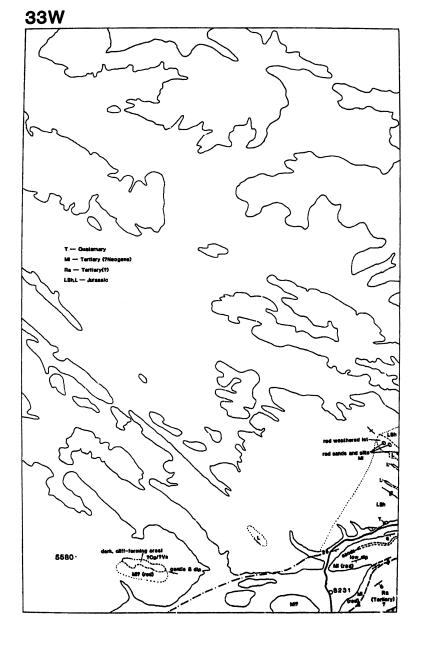
TRANSACTIONS SOCIETY

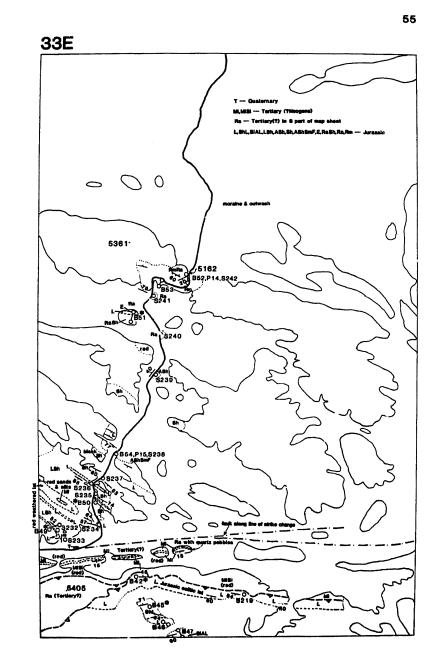


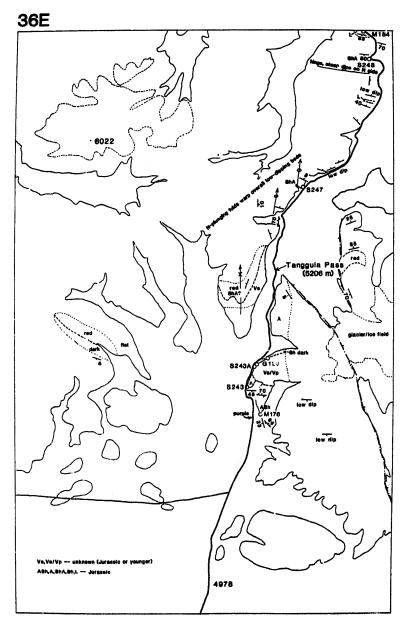





PHILOSOPHICAL THE ROYAL MATHEMATICAL, TRANSACTIONS SOCIETY Sciences

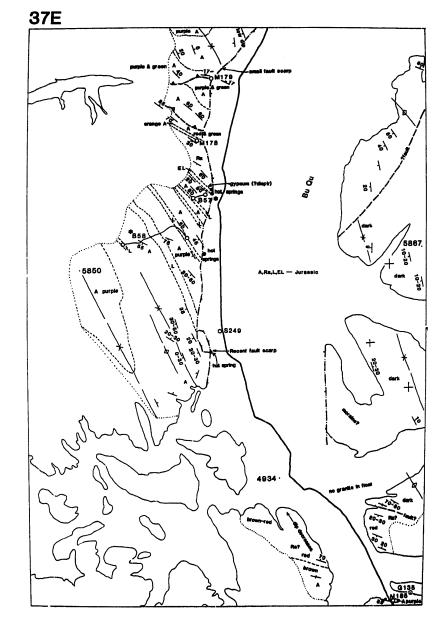

TRANSACTIONS SOCIETY 1

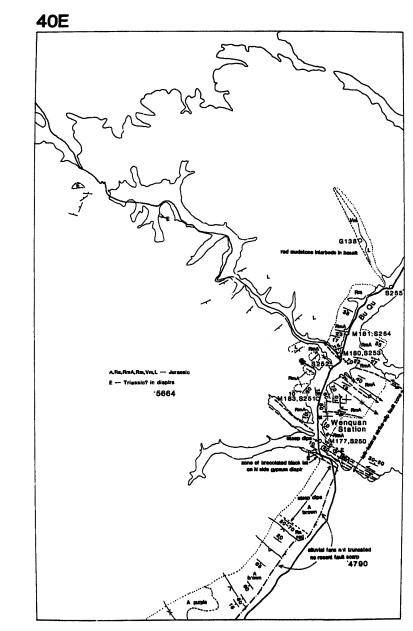

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

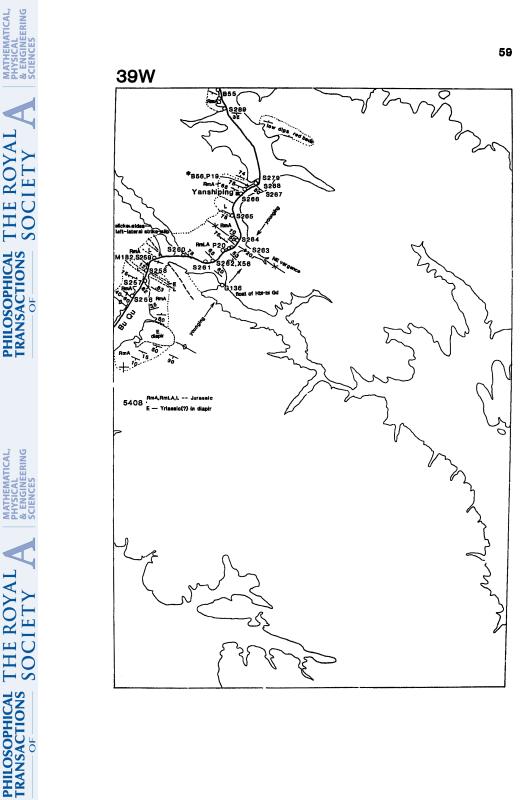


TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

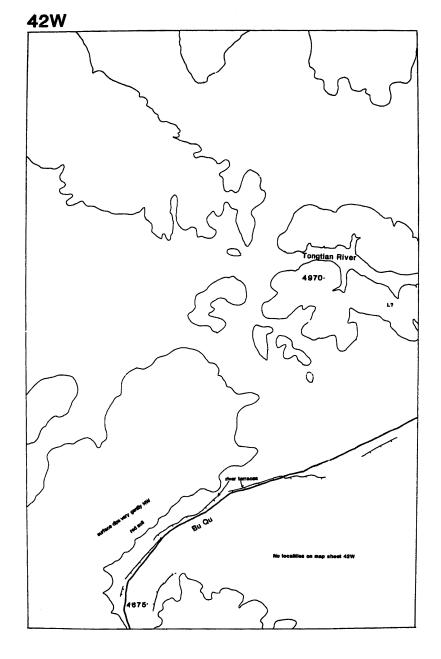


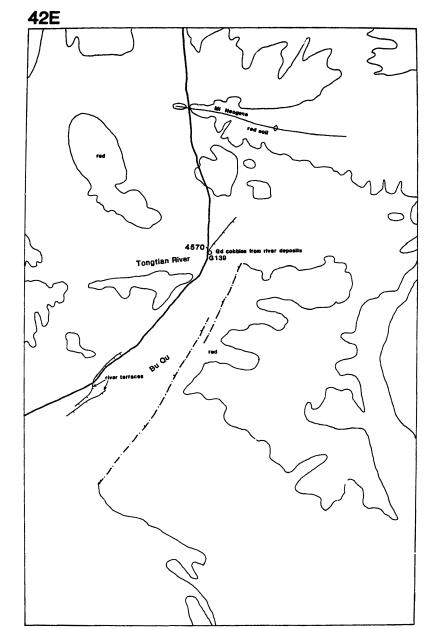


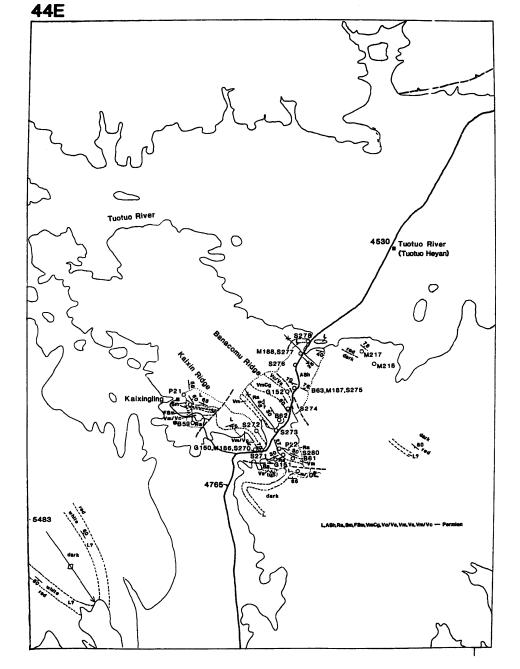


TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

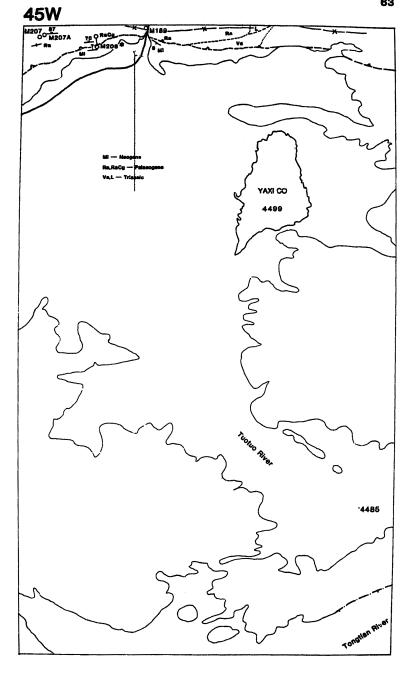

TRANSACTIONS SOCIETY

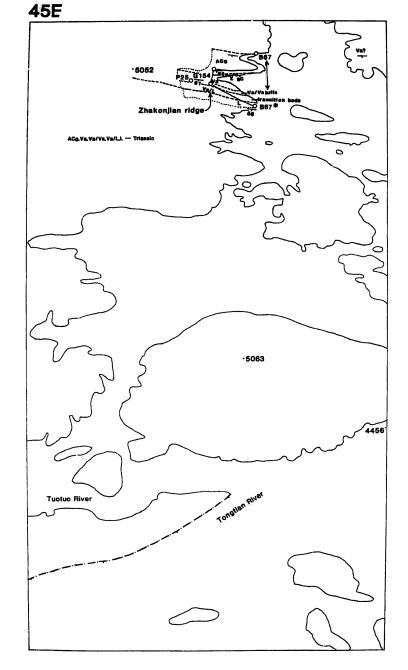


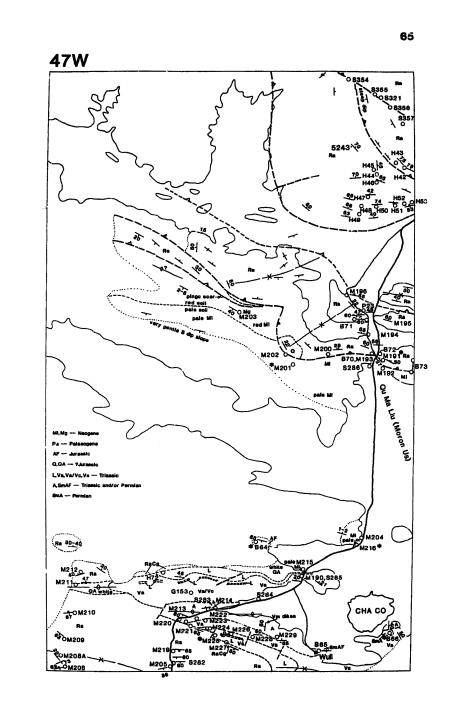

TRANSACTIONS SOCIETY 1

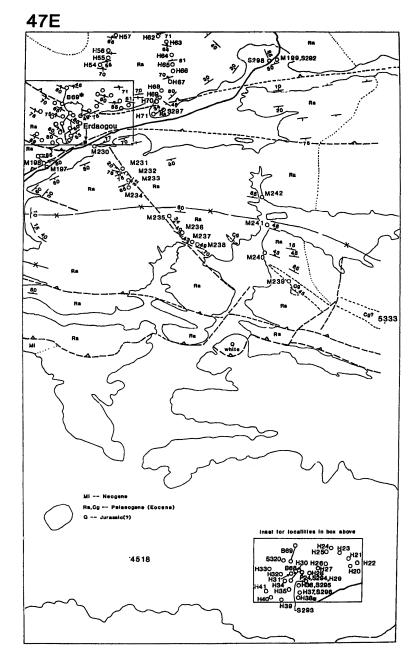
MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY



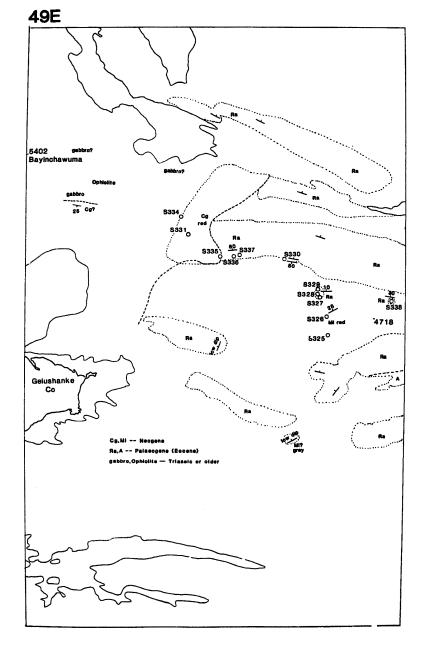


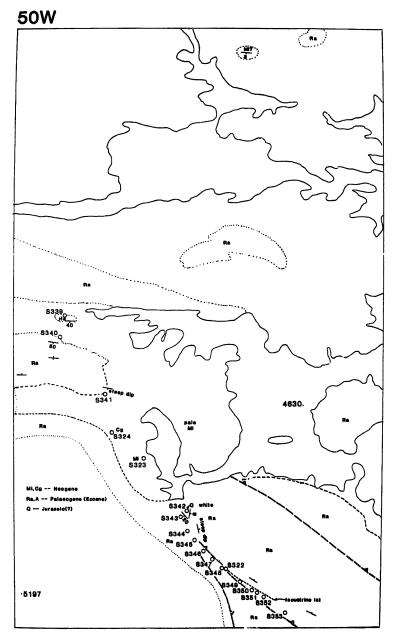


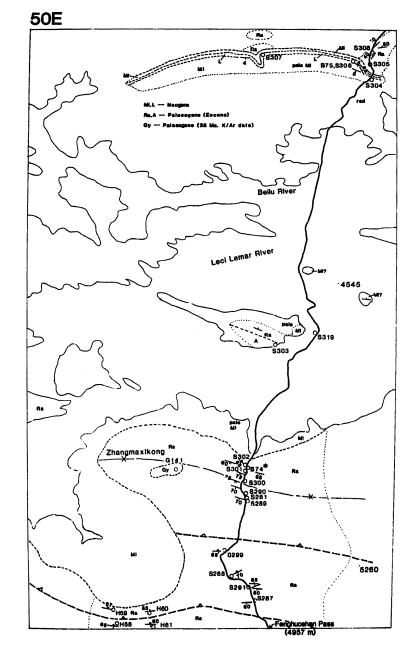


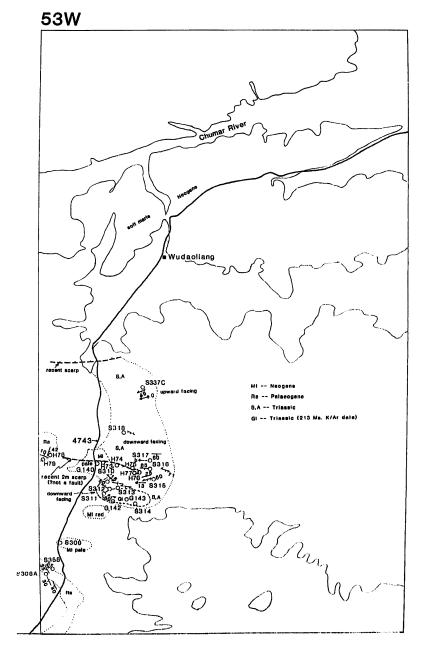
TRANSACTIONS SOCIETY

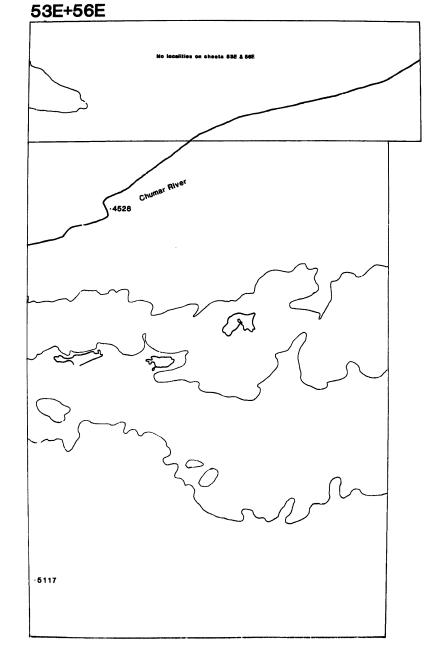
MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

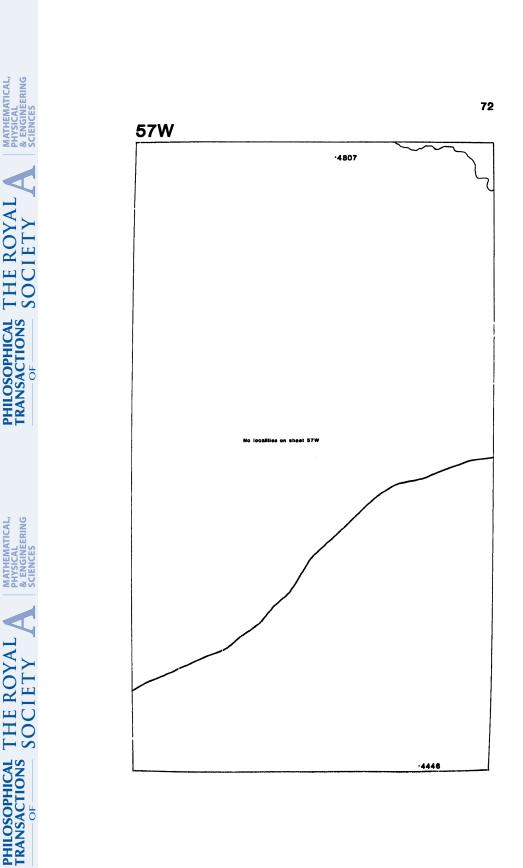


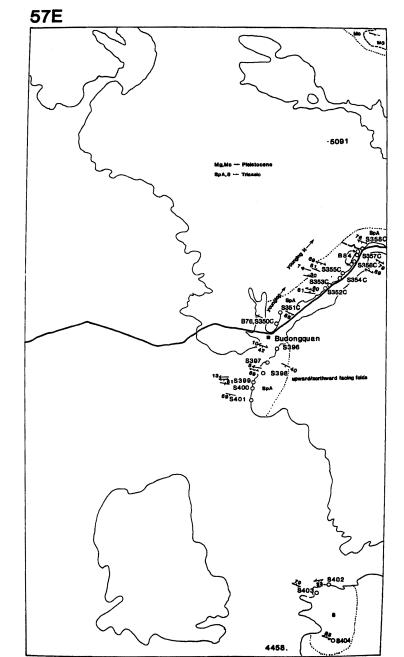


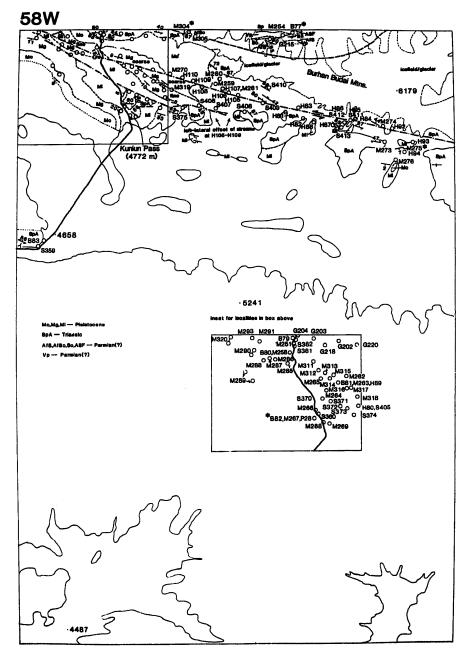


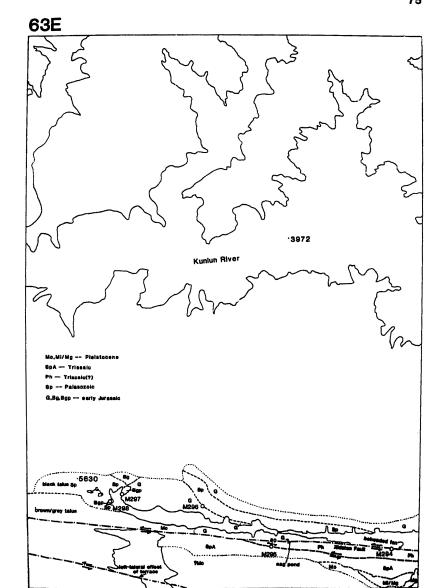


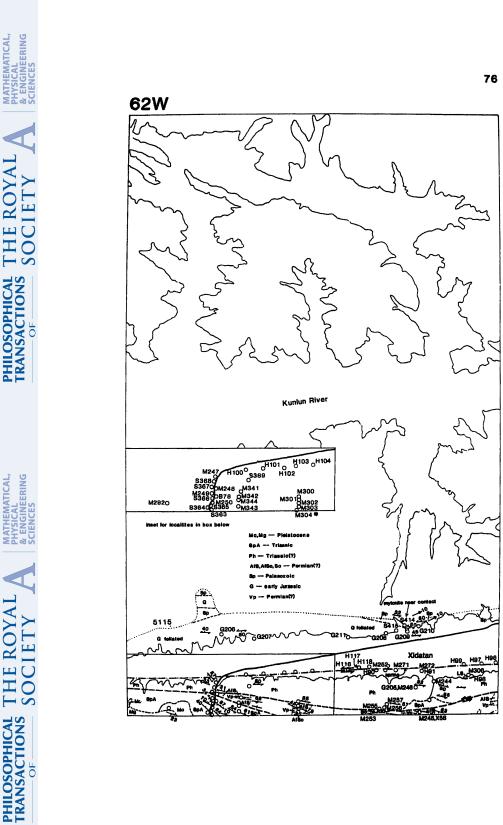


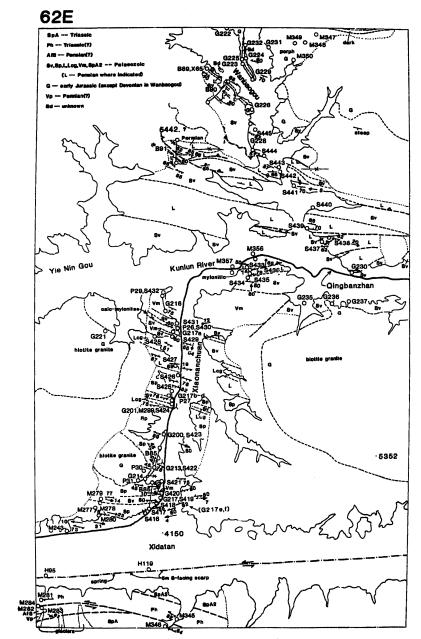




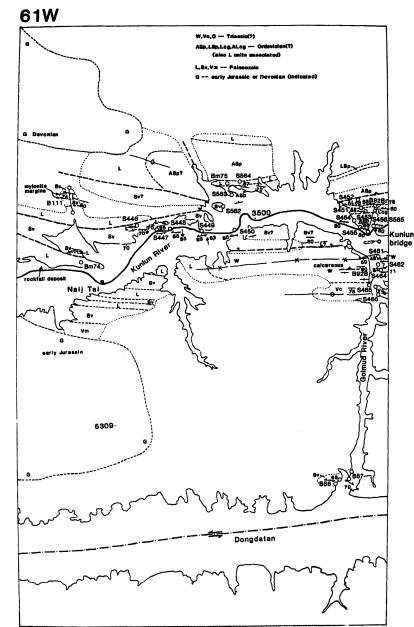





TRANSACTIONS SOCIETY

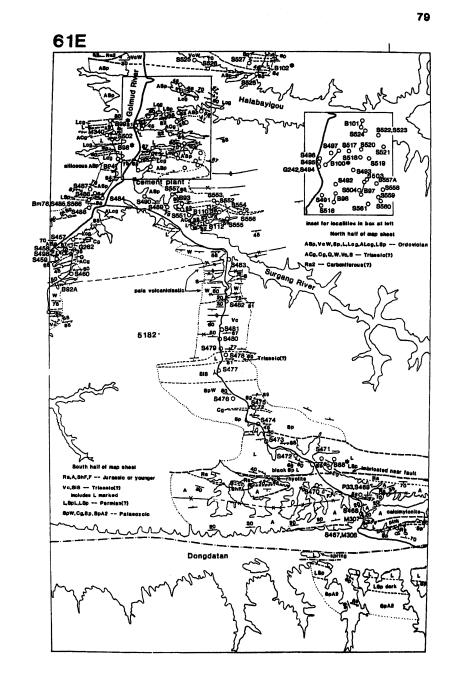

A MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES



TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES


TRANSACTIONS SOCIETY

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

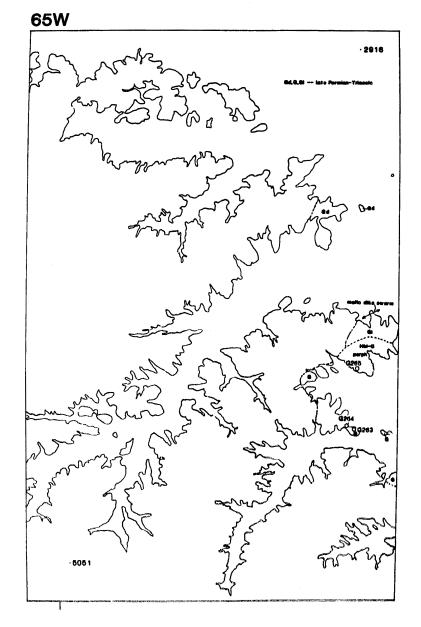
TRANSACTIONS SOCIETY

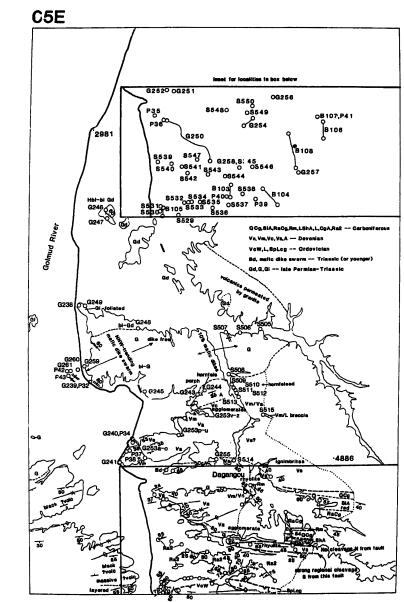
MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

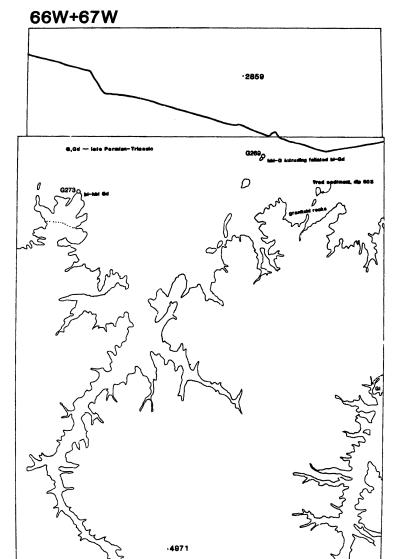
M310 7 27 M33 FM321 4330 43 45 45 4328 M329 0 56 50 0 56 50 0 327 0 M327 0 M327 0 M328 38 38 38 TRANSACTIONS SOCIETY ·5548 AM323] F M324 told hing

60W+HW

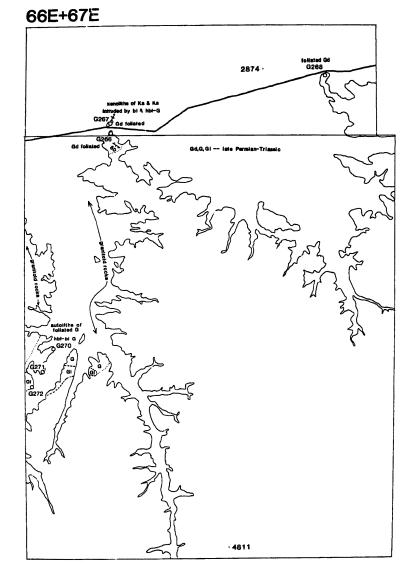
Dongda H115

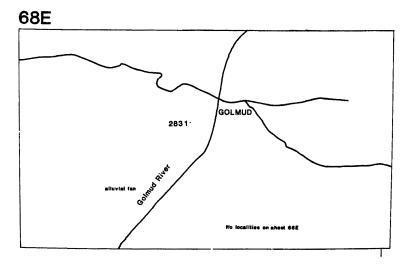

M309A





MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES



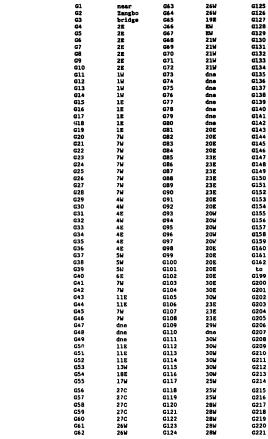


TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

Locality	Map Sheet	Locality	Map Sheet	Locality	Map Sheat	Locality	Map Sheat
B1	8C	B28	GW	B56	39₩	384	578
B2	8C	B29	CH	857	378	B85	62K
B3	8C	B30	GW	B58	372	B86	61W
B4	8C	B31	GW	B59	442	B87	6116
85	80	B32	202	860	445	B88	61E
B6	38	B33	208	B61	442	889	62B
B7	3E	834	BE	B62	44E	B90	62 E
B8	38	B35	208	B63	44E	B91	62B
B9	3W	B36	20E	B64	47W	892	61W
B10	3₩	B37	208	B65	47W	B92A	61E
BIOA	3W	B38	23E	B66	≜7₩	893	61B
B11	42	B39	23E	B67	458	894	61 R
B12	4E	B40	30E	B68	47B	B95	dne
B13	4E	341	30E	B69	47E	B96	61E
B14	41	B42	33E	B70	47W	B97	61E
B15	4₩	B43	dne	B71	47W	B98	61B
B16	41	B44	dne	B72	47W	B99	61E
B17	10₩	B45	33E	B73	47W	B100	61E
B18	10W	B46	33E	B74	50E	B101	678
B19	109	B47	33E	B75	50E	B102	61E
B20	10W	B48	28E	B76	57B	B103	65E
B21	10W	B49	33E	B77	58W	B104	65E
B22	10W	850	33E	878	62W	B105	65E
B23	10E	B51	33E	B79	58W	B106	65E
B24	FW	B52	33B	B80	58W	B107	65E
B25	FE	B53	33E	B81	58W	B108	65E
B26	FW	B54	33E	B82	58W	8109	dne
B27	PW	B55	39W	B83	58W	B110	61E
						B111	61W
BH 74	61W					B112	61E
BH 75	61W						
BM 76	618						


T-localities (Gansser)

Locality	Map Sheet	Locality	Map Sheet
T1-6	off maps to S & SW of Quxu	T26 (N47)	10W
T 7	38	T27	np
TB	38	T28	np
T9	3W, 8C	T29	171
T10	3₩	T30	38
T11	3W	T 31	CW
T12	3W	T32	CW
T13	3W	T33	CE
T14	3W	T34	CB
T15	3₩	735	199
T16	74	T36	19₩
T17	76	T37	23E
T16	74	T38	238
719	7₩	T39	np
T20	np	T40	np
T21	np	T41	np
T22	np	T42	np
T23	np	T43 (S222)	28W
T24 (H50		T44 and	np
T25 (S93) 10W	beyond	

dne = does not exist

Locality

Map Sheet

Locality

Map She

G-localities (Pearce, Harris)

Locality

Nao Sh

 $\begin{array}{c} 28\,\psi E\\ 36\,E\\ 36\,E\\ 29\,E\,W\\ 29\,E\,W\\ 29\,E\,W\\ 22\,E\,W\\ 22\,E\,W$ 22\,E\,W\\ 22\,E\,W 22\,E\,W\\ 22\,E\,W 22\,

58W 628 628 58W dne 58W 628

Locality

 G222
 G223

 G224
 G226

 G226
 G227

 G228
 G227

 G228
 G231

 G233
 G234

 G233
 G236

 G236
 G237

 G238
 G238

 G234
 G238

 G234
 G238

 G236
 G237

 G240
 G244

 G244
 G245

 G244
 G246

 G247
 G250

 G250
 G256

 G256
 G256

 G256
 G256

 G256
 G265

 G264
 G264

 G258
 G256

 G264
 G265

 G265
 G266

 G265
 G266

 G265
 G266

 G264
 G267

 G264
 G267

 G264
 G267

 G264
 G267

 G267
 G267

 G271
 G271

 G271</t

dne - does not exist

ЦO

87

Hap Sh

N-localities (Kidd, Molnar)

Locality	Map Sheet	Locelity	Map Sheet	Locality	Map Sheet	Locality	Yap Sheet
W1	20W	W14	20W	#2 7	GE	140	29 8
2	20₩	W15	dne	1128	GE+	841	29B
113	2014	N16	dne	129	GE	842	29B
14	20₩	31 7	dne	N30	GE	843	29E
315	20W	W18	dne	#31	29E	2434	29E
16	20W	819	dne	832	29E	844	29E
117	201	320	22₩	N33	29E	345	295
WB	20W	121	GE+	334	29E	846	298
89	201	N22	GE+	N35	298	N46A	29E
N10	209	123	GE+	136	29E	247	29B
W11	209	#24	GE+	¥37	29E	148	29E
¥12	206	¥25	GE+	N38	29E	149	28W
N13	206	N26	GE+	#39	29E		

dne = does not exist

H201 H202 H203 H204 H205 CW CW CE CE CE

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

P-localities (Lin, Watts)

Locality	Map Sheet	Locality	Kap Sheet	Locality	Map Sheet	Locality	Map Sheet
P1	3₩	P12	BE	P23	476	P34	65E
P2	3W	P13	23E	P24	47E	P35	65E
P3	410	P14	33E	P25	45B	P36	65B
P4	4E	P15	33E	¥26	628	P37	65E
P5	100	P16	29B	P27	628	P38	65E
P6	100	P17	29B	P28	58W	P39	65B
P7	17W	P18	298	P29	62E	P40	65E
P8	17W	P19	39W	P30	62E	P41	65E
P9	23E	P20	39W	P31	62 E	P42	65B
P10	23E	P21	44E	P32	658	P43	65E
P11	206	P22	44E	P33	61E		

H-localities (Molnar)

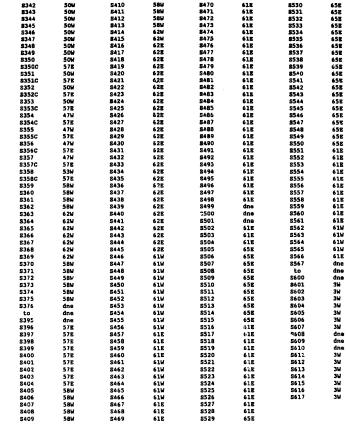
Locality	Map Sheet	Locality	Map Sheet	Locality	Map Shoet	Locality H	iap Sheet
H1	29E	H32	47E	H63	47E	H94 (M275)	58W
H2	29E	н33	47E	H64	47E	H95	62K
H3 (N31)	29E	H34	47E	H65	47B	H96	6 2 W
H4 (N32)	29E	H35	47E	H66	47E	H97	6 2 W
H5	29E	H36	47E	H6 7	AVE	H98 (M306)	62W
H6	29E	H37	47E	H68	47E	H99	62W
H7	29E	H38	47E	H6 9	47E	H100	6 2 W
H8	29E	Н39	478	H70	47E	8101	6 2 W
H9	29E	HAO	47E	H71	47E	H102	62W
H10 (N42		H41	47E	H72	47₩	H103	6 2 W
H11	29E	H42	47₩	H73	53W	H104	6 2W
H12	298	H43	47W	H74	53W	H105	58W
H13	29E	H44	47₩	H75	53W	H106	58W
H14	29E	H45	47W	H76	53W	H107 (M261)	58W
H15	29E	HAG	47₩	877	53W	H108	58W
H16	29E	H47	47W	H78	53W	H109	58W
H17	29E	H48	47₩	H79	53W	H110	58W
H18	29E	H49	47W	H80 (S40	5) 58W	8111	60W
H19 (N43) 29E	H50	47W	H81	58W	H112	60W
H20	478	851	47W	H82	58W	H113	60W
H21	47E	H52	47₩	H83	58W	H114	60W
H22	47E	H53	47W	H84	58W	H115	60W
H23	47E	H54	47E	H85 (S41	1) 58W	H116	52W
H24	47E	H55	47E	H86 (S41	2) 58W	H117	6 2 W
H25	47E	H56	47E	HB 7	58W	H118	6 2 W
H26	47E	H57	47E	H88	58W	H119	62E
H27	47E	H58	SOE	H89 (M20	3) 58W	H120	6 O W
H28	47E	N59	50E	H90	62W	H121	6 O W
H29	47E	H60	SOE	H91 (M27	2) 62W	H122	60W
H30	478	H61	508	H92	58W	H123	601
H31	47E	H62	47E	H93	58W		

			(Kİ	dd, Dewey)			89
Locality	Nap Sheet	Locality	Nap Sheet	Locality	Hap Sheet	Locality	Map Sheet
H1	1₩	M96	176	H191	47₩	H284	62E
H2	1₩	M97	17W	H192	476	H285	58W
83	S of Zangbo	N98	17W	M193	470	H286	58W
H4 H5	to Kamba-la	N99 N100	17W 17W	2194 2195	47W 47W	H287 H288	58¥ 58¥
26		N141	176	M196	476	1289	58W
117		H102	17W	H197	478	1290	58%
MB	19	H103	174	N198	478	H291	586
M9	19	M104	171	N199	478	M292	6 2W
M10 M11	1W 1R	N105 N106	17W 17W	N200 N201	471	N293	58W
H11 H12	18	H105	178	H202	47W 47W	1294 11295	63E 63E
N13	18	N108	26E	M203	479	1296	63E
814	18	8109	17W	H204	47W	11297	63E
N15	18	M110	198	H205	47₩	H298	63E
M16	18	M111	20E	M206	45W	M299	62E
H17		N112 N113	20E 20E	1207 1207A	45W 45W	M300	62W
N18 N19	AW	H114	202	H208	438	N301 N302	6 2 W 6 2 W
N20	AN	N115	208	M208A	47W	N303	62W
M21	AW	H116	20E	M209	4710	8304	62W & 58W
M22	AW	H117	205	M210	47W	N305	6 2 W
M23	AW	N118	20E 30E	H211	47₩	H306	62W
M24 M25	AM AM	N119 N120	20E	N212 N213	47W 47W	N307 N308	61E 61E
H25 H26	AW	M121	20E	H214	47W	H309	60W
1127	38	N122	20E	M215	47₩	N309A	60W
M28	38	H123	20E	M216	47₩	M310	60W
M29	38	M124	20E	N217	44E	M311	5 BW
M30	3E	M125	20E	N218	44E	M312	58W
H31	38	M126	202	M219	471	N313	58W
N32 N33	1E 1E	N127 N128	23E 23E	N220 N221	47W 47W	N314 N315	58W 58W
H34	38	N129	238	M222	474	N316	581
M35	38	N130	238	M223	47₩	H317	58W
N36	38	N131	23E	H224	47₩	M318	58W
M37	3E	M132	23E	H225	47₩	8319	58W
M38	38	N133	23E	H226	47₩	M320	58W
N39 N40	36	N134	20E	M227	47₩	N321	60W
N40 N41	3E 3e	M135 M136	20E 20E	N228 N229	47W 47W	M322 M323	60W 60W
H41 H42	38	M137	202	H230	47E	8324	60W
M43	5W	M138	208	M231	478	11325	60W
M44	10W	M139	20E	M232	47E	M326	60W
M45	10W	M140	20E	M233	47E	M327	60W
M46	100	H141	20E	M234	47E	M328	60W
M47	100	H142	20E 20E	M235 M236	478	N329	60W 60W
M48 M49	12W 12W	M143 M144	20E 20E	M236 M237	47E 47E	N330 N331	60W
N50	120	M145	208	M238	47E	N332	60W
M51	12W	M146	208	M239	478	N333	60W
M52	12W	H147	20E	N240	47E	H334	60W
M53	12W	M148	20E	M241	47E	N335	60W
M54	12W	M149	20E	M242	47E	M336	60W
M55	12W	M150 M151	207 20E	N243 N244	62E 62W	M337 M338	60W 60W
N56 N57	10W 10W	N152	205	H244 H245	6 2 W	H338 H339	60W
M58	100	M153	205	H246	62W	H340	61E
N59	10W	M154	206	H247	62W	H341	6 2 W
M6 0	10W	M155	20E	M248	6 2 W	H342	62W
M61	100	M156	20E	M249	62W	N343	62W
M6 2	10W	H157	20E	M250	62₩	H344	62W
N6 3 N6 4	10W	N158 N159	20E 20E	N251 N252	58W 6 2W	H345 H346	62E 62E
M65	11E 11E	M159	208	H252 H253	62₩	N347	62E
M66	116	M161	208	H254	58W	H348	62E
N6 7	118	M162	20E	M255	62W	N349	62B
N6 8	10₩	M163	20E	M256	6 2 W	M350	62B
M69	10E	M164	20E	M257	6 2 W	M351	60W
M70	105	M165	20E 20E	M258 M259	58W 58W	M352 M353	60W 60W
M71 M72	13W 15C	M166 M167	202	M260	58W	H354	60%
M73	150	M168	205	M261	56W	N355	60W
1174	150	M169	28W	M262	58W	M356	62E
N75	15C	M170	28W	M263	58W	N357	62E
N76	17W	H171	28W	M264	58W	N358	60W
M77	17W	M172	28W	M265	58W	N359	dne
M78 N79	26W 26W	M173 M174	28W 28W	N266 N267	58W 58W	N360 N361	3E 3E
M80	26W	M175	28%	M268	58W	M362	18
M81	26W	M176	36E	H269	58W	M363	3₩
N82	26W	M177	40E	M270	58W	N364	3W
M83	26W	M178	372	M271	6 2 W	M365	3W
M84	26W	M179	378	M272	62W	H366	3W
N85 N86	26W 26W	N180 N181	40E 40E	M273 M274	584 58w	M367 M368	3W 3W
M87	26W 26W	N181	39₩	M275	58W	M369	3W 1W
1688	2,6W	M183	40E	M276	58W	H370	19
M89	26W	M184	36E	H277	62E	M371	1W
N90	26W	M185	378	M278 M279	628	H372 H373	1W 1W
M91 M92	17W 17W	N186 N167	446 448	M279 M280	62E 62E	#373	1W
N93	170	N188	44B	M281	62B		
M94	17W	M189	450	N282	625	dne -	does nut exist
195	17W	N190	45W 47W	H283	628		

M-localities (Kidd, Dewey)

PHILOSOPHICAL THE ROYAL MATHEMATICAL, TRANSACTIONS SOCIETY Sciences

PHILOSOPHICAL THE ROYAL MATHEMATICAL, TRANSACTIONS SOCIETY & PREVISERING OF SOCIETY


			(Dimena)	soon, counter			
Locality	Map Sheet	Locality	Nap Sheet	Locality	Map Sheet	Locality	Map Sheet
S1	16	S87	12W	S173	20E	8258	396
\$2	1.6	S88	12W	8174	205	8259	39₩
\$3	off maps	889	121	S175	208	\$260	39₩
54	Kamba-la	590	100	8176	208	\$261	394
85	to Zangbo	891	109	8177	205	\$262	394
86		592	104	S178	208	S263	39W
\$7		\$93	100	\$179	208	5264	394
58	•	894	100	S180	238	S265	394
59		895	100	5180	23B	S265	
							39W
S10		596	100	S182	23R	5267	39W
S11		597	10W	S183	23E	S268	39W
S12		S98	100	S184	235	S269	39W
513	-	S99	100	S185	23E	S270	44E
S14		S100	10W	S186	23E	S271	44E
S15	28	S101	108	S187	23B	S272	44E
S16	2E	\$102	10E	S188	23E	S273	44E
S17	28	S103	13W	S189	23E	S274	44B
\$18	2E	8104	13W	S190	23E	\$275	44E
519	2E	\$105	150	\$191	23E	S276	44E
520	28	5106	15C	5192	238	\$277	44E
521	2E	\$107	150	\$193	238	\$278	AAR
522	2E	\$108	17W	5194	238	5279	39W
523	28	5109	17W	\$195	238	5280	44E
524	26	5110	18E	5196	238	\$281	SOR
S25	28	\$111	18W	\$190	238	5282	47₩
526	26	S112	186	S198	308	5283	47₩
				5198	308		47₩
S27	28	5113	186			S284	
S28	2E	S114	25C	S200	308	S285 S286	47W 47W
529	2E	S115	25C	5201	23E		
\$30	38	S116	25C	5202	dne	S287	50E
\$31	3E	S117	25C	5203	25C	S288	50E
\$32	3E	S118	25C	S204	25C	S289	50E
\$33	3W	5119	25C	S205	25C	S290	50B
\$34	3W	S120	18E	S206	25C	5291	50E
\$35	3E	S121	18E	\$207	25C	5292	47E
\$36	3E	S122	186	S208	25C	S293	47E
\$37	8C	S123	18E	S209	25C	S294	47E
538	3E	5124	18E	\$210	25C	\$295	478
\$39	3E	S125	185	\$211	25C	\$296	47E
540	3E	5126	18E	5212	25C	\$297	47E
541	3E	5127	188	\$213	28W	5298	47E
542	36	5128	198	5214	28W	5299	50E
543	38	\$129	19W	\$215	28W	\$300	50E
544	3₩	\$130	20E	S216	dne	\$301	50E
545	dne	\$130	205	5217	288	5302	50E
545	3W	\$132	EE	5217	286	\$303	50E
540 547	4₩	\$133	EE	5219	338	\$304	508
547			EE EE		28W	\$305	50E
548	4W AU	S134	EE	\$220 \$221	28W	\$305	50E
		\$135	EE	5222			508
550	AW	S136			28W	\$307	
851	4₩	S137	BE	S223	28W	\$308	50E
\$52	4W	\$138	EE	S224	28W	S308A	53W
553	4₩	S139	EE	\$225	28W	\$309	53W
\$54	41	S140	CE	S226	28W	\$310	5 3 W
\$55	4₩	S141	CE	S227	28W	\$311	5 3 W
\$56	4₩	5142	CW	S228	28W	5312	53W
\$57	4₩	S143	CW	S229	28W	\$313	53W
558	AU	5144	CW	5230	28W	S314	53W
\$59	4₩	5145	BW	\$231	33W	S315	53W
560	4₩	S146	BW	5232	33E	\$316	53W
S61	AW	S147	B.	5233	33E	\$317	53W
562	4	5148	CW	5234	33E	\$318	53W
S63	4₩	5149	CW	\$235	33E	5319	50B
S64	4₩	\$150	CW	5236	33E	\$320	47B
565	54	\$151	CW	\$237	33E	\$321	47W
S66	5₩	\$152	CW	\$238	33E	\$322	50W
S67	5₩	8153	CW	\$239	33E	\$323	50W
568	5₩	\$154	CE	5240	33E	\$324	50W
569	6E	\$155	CE	5241	33E	\$325	49E
\$70	6E	\$156	DW	8242	338	\$326	49E
571	68	\$150	EW	S243	33E	\$327	49E
571	6E 7W	\$158	EW EW	S243 S243A	33E	5328	496
\$72 \$73	10W	\$158	EW	524JA 5244	28W	\$329	495
S/3 S74	100	5159	EW	5244	28W	\$330	496
			20E	S245 S246	28W 28W	\$330	49E
875	100	5161	205		28W 33B	\$331	495
576	100	5162		5247			
\$77	105	5163	19₩	5248	33E	\$333	dne 49E
\$78	10E	S164	191	5249	37E	\$334 \$335	49E
\$79	105	\$165	19W	\$250	40E		49E 49E
580	10E	\$166	19W	\$251	40E	S336	49E
581	10E	\$167	19W	\$252 \$253	40E 40E	\$337 \$337C	49E 53W
882 583	108	8168 5169	19W 19W	8253 5254	40E	S337C S338	53W 49E
					40 <u>E</u> 40E	5338	496 50W
584	12₩	\$170	20E	5255	40E 39W	S339 S340	50W 50W
885	12W	\$171	20E	S256 S257	39W 39W	5340	50W
S8 6	12W	\$172	20E	\$257	3 A M	8341	208

THE ROYAL A SOCIETY

PHILOSOPHICAL TRANSACTIONS ЦO

dne = does not exist (S 337C; 350C-358C are Coward only)

X-localities

(Samples from S.M.B and T localities renumbered by G - Peerce, Marris) A few do not correspond with an S.M.B.M. or T number, and are shown separately on the microfichs mapps. Most of the rest are not shown separately on the maps.

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

Mathematical, Physical & Engineering Sciences

TRANSACTIONS SOCIETY

	Equivelent locality	Hap Sheet	Sample	Equivalent locality	Map Sheet	Sample	Equivalent locality	Map Sheet
Sample	ICCALLEY	34665	2010/10	10001109	311000	2000-10	IUCALLY	SHEEL
X 1	T11	3₩	X25	S205	25C	X49	\$167	19W
12	N8	1W	X26	S205	25C	X 50	143	C₩
X3	\$70	6 E	127	S205	25C	X 51	S146	BW
24	\$70	62	X28	S205	25C	X52	5145	8W
X5	M47	10W	X29	S203	25C	X53	B24	FW
X 6	M47	10W	X30	S203	25C	X54		30E
X 7	M47	109	X31	S203	25C	X55	S245	28W
X8	247	109	X32	S203	25C	X56	S262	39W
X9	864	115	X33	S205	25C	857	B67	45E
X10	M64	115	X34		26W	X58	8245	62W
X11	M64	118	X35	N81	26W	X59	H253	62W
X12	M64	118	X36	182	26W	360	H254	58W
X13	M6 4	11E	X3 7	N86	26W	X61	877	284
X14	S94	100	X38	N80	260	362	H262	58W
X15	S94	100	X39	M90	26W	363	B85	62E
X16	594	100	840	198	17W	X64	N279	62E
X17	871	13W	X41	868	17W	365	B89	62E
X18	M71	13W	X42	H146	20E	X66	\$475	61E
X19	1171	139	X43	N142	20E	X67	M296	63E
X20	871	13W	344	H139	20E	368	M297	63E
X21	\$205	25C	345	S160	EW	X69	S458	61E
X22	\$205	25C	X46	S159	EW	370	\$550	65B
X23	\$205	25C	347	\$167	19W	\$71	\$546	65E
¥24	\$205	25C	X48	S166	19W			- 20

Equivalents of section numbers used by Pearce and Mei (Volcanics - Chapter 6)

Sequence		Maps	Locality number(s)
LT1	Dagze	1W, 1E, 3E	G14, 16, 17, 18, 19
LT2	Quesang	4W, 4E	G32
LP1	Megu	AW, AE	G29, 31, 33, 36
LP2	Yangbajian	7₩	G41, 45, 46
LJ1	Lubuchong	23E	G106, 107
LJ2	S. Amdo	28W	G129, 130, 131
LC1	Nagqu	17W	G55
LC2	Norbuzhons	20E	G98, 99
LC3	Pamu Co/Kyiru Co.	23E	G85-89
LCA	Amdo	28W	G133
0J1	N. Wenguan	40E	G138
QP1	Kaixin Ridge	44E	G150, 151
QP2	Banacomu Ridge	44E	G152
QT1	Zhakonjian	45E	G154
KP1	Wantaogou	62E	G216, 228, 230
KD1	N. Kunlun (N)	65E	G240, 241, 243, 244, 251, 253, 255, 256
KD2	N. Kunlun (S)	65E	G250, 254, 257, 258
KT1	N. Kunlun dikes	65E	G239, 240, 241, 245, 252, 259-261
QNI	Zhangmaxikong	50E	G141

Localities in sections discussed in Pearce and Deng (Ophiolites - Chapter 8)

Sections		Maps	Localities
BG1	Baila	20W	G94-97; N5-11
BG2	Nalong	19W, 20E	G91-92; S161, 164-167
BG3	Lubuchong	238	G106, 107
BG4	Dongiao	30E	G103, 104, 105
BG5	Amdo	28₩	G127, 132, 134
BG6	Ando (S)	281	G129-131
	Ado	20E	G81
	Yila	106	G54; S120-12,